--- base_model: - Etherll/Replete-LLM-V3-Llama-3.1-8b-merged - Replete-AI/Replete-LLM-V2-Llama-3.1-8b tags: - merge - mergekit - lazymergekit - Etherll/Replete-LLM-V3-Llama-3.1-8b-merged - Replete-AI/Replete-LLM-V2-Llama-3.1-8b --- # Replete-LLM-V3-Llama-3.1-8b Replete-LLM-V3-Llama-3.1-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Etherll/Replete-LLM-V3-Llama-3.1-8b-merged](https://huggingface.co/Etherll/Replete-LLM-V3-Llama-3.1-8b-merged) * [Replete-AI/Replete-LLM-V2-Llama-3.1-8b](https://huggingface.co/Replete-AI/Replete-LLM-V2-Llama-3.1-8b) ## 🧩 Configuration ```yaml models: - model: Etherll/Replete-LLM-V3-Llama-3.1-8b-merged parameters: weight: 1 - model: Replete-AI/Replete-LLM-V2-Llama-3.1-8b parameters: weight: 1 merge_method: ties base_model: rombodawg/Meta-Llama-3.1-8B-reuploaded parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Etherll/Replete-LLM-V3-Llama-3.1-8b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```