File size: 2,713 Bytes
948b0e8
 
 
 
 
c8c9b8f
948b0e8
 
0d00bf4
c8c9b8f
 
948b0e8
 
 
0d00bf4
948b0e8
 
 
 
 
 
0d00bf4
 
 
948b0e8
 
 
0d00bf4
948b0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d00bf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: llama3
tags:
- moe
- merge
- llama-3
language:
- en
- tr
pipeline_tag: text-generation
library_name: transformers
---


## 💻 For English
Megatron_llama3_2x8B is a Mixure of Experts (MoE) (two llama3 models)


```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "Eurdem/Megatron_llama3_2x8B"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", load_in_8bit= True)

messages = [
    {"role": "system", "content": "You are a helpful chatbot who always responds friendly."},
    {"role": "user", "content": "f(x)=3x^2+4x+12 so what is f(3)?"},
]

input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

outputs = model.generate(input_ids,
                          max_new_tokens=1024,
                          do_sample=True,
                          temperature=0.7,
                          top_p=0.7,
                          top_k=500,
                          eos_token_id = tokenizer.eos_token_id
                      )
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```

# Megatron_llama3_2x8B



## 💻 Türkçe İçin

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "Eurdem/Megatron_llama3_2x8B"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", load_in_4bit= True)

messages = [
    {"role": "system", "content": "Sen Defne isimli Türkçe konuşan bir chatbotsun."},
    {"role": "user", "content": "Sana 2 sorum var. 1) Sen kimsin?  2)f(x)=3x^2+4x+12 ise f(3) kaçtır?"}
]

input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

outputs = model.generate(input_ids,
                          max_new_tokens=1024,
                          do_sample=True,
                          temperature=0.7,
                          top_p=0.7,
                          top_k=500,
                          eos_token_id = tokenizer.eos_token_id
                      )
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```

### Çıktı
```Merhaba! Ben Sen Defne, Türkçe konuşan bir chatbotum. Hizmetinizdeyim.

Sorunuzun 2. kısmı için, f(x) = 3x^2 + 4x + 12 formülünü ele alalım. f(3)'ün hesabını yapalım:

f(3) = 3(3)^2 + 4(3) + 12
= 3(9) + 12 + 12
= 27 + 24
= 51

Bu nedenle, f(3) 51'dir.```