EuriskoMobility
commited on
Commit
•
14e3683
1
Parent(s):
b34a3d4
Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +317 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: <Question> What will the ministry of tourism do to boost the flow of tourists
|
9 |
+
to the country during the holiday season? </Question> <Answer> Anticipating a
|
10 |
+
surge in holiday travel, the Ministry of Tourism is rolling out a multi-pronged
|
11 |
+
strategy to attract tourists and ensure a memorable experience. The centerpiece
|
12 |
+
is the "Festive Wonderland" campaign, transforming major cities into enchanting
|
13 |
+
winter scenes with illuminated streets, snow machines, and festive markets overflowing
|
14 |
+
with local crafts and delicacies. </Answer> <Question> Was the cost of such a
|
15 |
+
strategy announced by the ministry? </Question>
|
16 |
+
- text: <Question> How does the company offer help for parents with their children?
|
17 |
+
</Question> <Answer> At Jack Track, we understand the importance of supporting
|
18 |
+
our employees who are parents. We offer a range of assistance programs to help
|
19 |
+
parents with their children. Our comprehensive benefits package includes flexible
|
20 |
+
work schedules and remote work options, allowing parents to balance their professional
|
21 |
+
and family responsibilities effectively. </Answer> <Question> How often can we
|
22 |
+
work remotely? </Question>
|
23 |
+
- text: <Question> Is Store Manager considered rank 3 or rank 2? </Question> <Answer>
|
24 |
+
In our organization's hierarchical structure, the position of Store Manager is
|
25 |
+
considered as a Rank 2 role. </Answer> <Question> What does this level of responsibility
|
26 |
+
typically involves? </Question>
|
27 |
+
- text: <Question> How many days off do we get during Easter? </Question> <Answer>
|
28 |
+
During Easter, employees typically enjoy a generous 15-day break, which includes
|
29 |
+
weekends and public holidays. This extended period allows for ample time to relax
|
30 |
+
and celebrate the holiday season with family and friends. </Answer> <Question>
|
31 |
+
What about Christmas? </Question>
|
32 |
+
- text: <Question> What is the highest grossing movie at the box office? </Question>
|
33 |
+
<Answer> The highest-grossing movie at the box office is Avatar. </Answer> <Question>
|
34 |
+
How much money did the movie make? </Question>
|
35 |
+
metrics:
|
36 |
+
- accuracy
|
37 |
+
pipeline_tag: text-classification
|
38 |
+
library_name: setfit
|
39 |
+
inference: true
|
40 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
41 |
+
model-index:
|
42 |
+
- name: SetFit with sentence-transformers/all-mpnet-base-v2
|
43 |
+
results:
|
44 |
+
- task:
|
45 |
+
type: text-classification
|
46 |
+
name: Text Classification
|
47 |
+
dataset:
|
48 |
+
name: Unknown
|
49 |
+
type: unknown
|
50 |
+
split: test
|
51 |
+
metrics:
|
52 |
+
- type: accuracy
|
53 |
+
value: 0.9347826086956522
|
54 |
+
name: Accuracy
|
55 |
+
---
|
56 |
+
|
57 |
+
# SetFit with sentence-transformers/all-mpnet-base-v2
|
58 |
+
|
59 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
60 |
+
|
61 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
62 |
+
|
63 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
64 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
65 |
+
|
66 |
+
## Model Details
|
67 |
+
|
68 |
+
### Model Description
|
69 |
+
- **Model Type:** SetFit
|
70 |
+
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
|
71 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
72 |
+
- **Maximum Sequence Length:** 384 tokens
|
73 |
+
- **Number of Classes:** 2 classes
|
74 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
75 |
+
<!-- - **Language:** Unknown -->
|
76 |
+
<!-- - **License:** Unknown -->
|
77 |
+
|
78 |
+
### Model Sources
|
79 |
+
|
80 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
81 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
82 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
83 |
+
|
84 |
+
### Model Labels
|
85 |
+
| Label | Examples |
|
86 |
+
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
87 |
+
| 1 | <ul><li>'<Question> Who was the Germany national team captain during the 2006 World cup? </Question> <Answer> Michael Ballack was the Germany national team captrain during the 2006 world cup </Answer> <Question> How old was he? </Question>'</li><li>'<Question> Who was the Germany national team captain during the 2006 World cup? </Question> <Answer> Michael Ballack was the Germany national team captrain during the 2006 world cup </Answer> <Question> Who won it back then? </Question>'</li><li>'<Question> How old was Ronaldo when he moved to Real Madrid? </Question> <Answer> Ronaldo moved to Real Madrid after leaving Inter when he was 25 years old. </Answer> <Question> What year did he leave? </Question>'</li></ul> |
|
88 |
+
| 0 | <ul><li>'<Question> Which ocean surrounds Antarctica? </Question> <Answer> The ocean that surrounds Antarctica is the Southern Ocean. </Answer> <Question> What challenges do scientists face when conducting research in Antarctica? </Question>'</li><li>'<Question> Name a country in Oceania. </Question> <Answer> A country in Oceania is Australia. </Answer> <Question> What are some of the popular tourist attractions in Oceania? </Question>'</li><li>"<Question> What's the significance of the Suez Canal? </Question> <Answer> The Suez Canal holds great importance as a crucial Egyptian waterway that links the Mediterranean Sea to the Red Sea. It plays a pivotal role in enhancing maritime trade and transportation between Europe and Asia, providing ships with a shorter and safer route compared to the arduous journey around the southern tip of Africa. </Answer> <Question> How has the Suez Canal impacted global trade? </Question>"</li></ul> |
|
89 |
+
|
90 |
+
## Evaluation
|
91 |
+
|
92 |
+
### Metrics
|
93 |
+
| Label | Accuracy |
|
94 |
+
|:--------|:---------|
|
95 |
+
| **all** | 0.9348 |
|
96 |
+
|
97 |
+
## Uses
|
98 |
+
|
99 |
+
### Direct Use for Inference
|
100 |
+
|
101 |
+
First install the SetFit library:
|
102 |
+
|
103 |
+
```bash
|
104 |
+
pip install setfit
|
105 |
+
```
|
106 |
+
|
107 |
+
Then you can load this model and run inference.
|
108 |
+
|
109 |
+
```python
|
110 |
+
from setfit import SetFitModel
|
111 |
+
|
112 |
+
# Download from the 🤗 Hub
|
113 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
114 |
+
# Run inference
|
115 |
+
preds = model("<Question> What is the highest grossing movie at the box office? </Question> <Answer> The highest-grossing movie at the box office is Avatar. </Answer> <Question> How much money did the movie make? </Question>")
|
116 |
+
```
|
117 |
+
|
118 |
+
<!--
|
119 |
+
### Downstream Use
|
120 |
+
|
121 |
+
*List how someone could finetune this model on their own dataset.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
<!--
|
125 |
+
### Out-of-Scope Use
|
126 |
+
|
127 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
## Bias, Risks and Limitations
|
132 |
+
|
133 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
134 |
+
-->
|
135 |
+
|
136 |
+
<!--
|
137 |
+
### Recommendations
|
138 |
+
|
139 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
140 |
+
-->
|
141 |
+
|
142 |
+
## Training Details
|
143 |
+
|
144 |
+
### Training Set Metrics
|
145 |
+
| Training set | Min | Median | Max |
|
146 |
+
|:-------------|:----|:--------|:----|
|
147 |
+
| Word count | 14 | 44.4406 | 221 |
|
148 |
+
|
149 |
+
| Label | Training Sample Count |
|
150 |
+
|:------|:----------------------|
|
151 |
+
| 0 | 240 |
|
152 |
+
| 1 | 248 |
|
153 |
+
|
154 |
+
### Training Hyperparameters
|
155 |
+
- batch_size: (16, 16)
|
156 |
+
- num_epochs: (3, 3)
|
157 |
+
- max_steps: -1
|
158 |
+
- sampling_strategy: oversampling
|
159 |
+
- num_iterations: 20
|
160 |
+
- body_learning_rate: (2e-05, 2e-05)
|
161 |
+
- head_learning_rate: 2e-05
|
162 |
+
- loss: CosineSimilarityLoss
|
163 |
+
- distance_metric: cosine_distance
|
164 |
+
- margin: 0.25
|
165 |
+
- end_to_end: False
|
166 |
+
- use_amp: False
|
167 |
+
- warmup_proportion: 0.1
|
168 |
+
- l2_weight: 0.01
|
169 |
+
- seed: 42
|
170 |
+
- eval_max_steps: -1
|
171 |
+
- load_best_model_at_end: False
|
172 |
+
|
173 |
+
### Training Results
|
174 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
175 |
+
|:------:|:----:|:-------------:|:---------------:|
|
176 |
+
| 0.0008 | 1 | 0.5762 | - |
|
177 |
+
| 0.0410 | 50 | 0.2742 | - |
|
178 |
+
| 0.0820 | 100 | 0.2188 | - |
|
179 |
+
| 0.1230 | 150 | 0.0586 | - |
|
180 |
+
| 0.1639 | 200 | 0.0194 | - |
|
181 |
+
| 0.2049 | 250 | 0.0028 | - |
|
182 |
+
| 0.2459 | 300 | 0.0004 | - |
|
183 |
+
| 0.2869 | 350 | 0.0003 | - |
|
184 |
+
| 0.3279 | 400 | 0.0002 | - |
|
185 |
+
| 0.3689 | 450 | 0.0001 | - |
|
186 |
+
| 0.4098 | 500 | 0.0001 | - |
|
187 |
+
| 0.4508 | 550 | 0.0001 | - |
|
188 |
+
| 0.4918 | 600 | 0.0001 | - |
|
189 |
+
| 0.5328 | 650 | 0.0006 | - |
|
190 |
+
| 0.5738 | 700 | 0.0001 | - |
|
191 |
+
| 0.6148 | 750 | 0.0001 | - |
|
192 |
+
| 0.6557 | 800 | 0.0001 | - |
|
193 |
+
| 0.6967 | 850 | 0.0001 | - |
|
194 |
+
| 0.7377 | 900 | 0.0001 | - |
|
195 |
+
| 0.7787 | 950 | 0.0001 | - |
|
196 |
+
| 0.8197 | 1000 | 0.0001 | - |
|
197 |
+
| 0.8607 | 1050 | 0.0001 | - |
|
198 |
+
| 0.9016 | 1100 | 0.0001 | - |
|
199 |
+
| 0.9426 | 1150 | 0.0001 | - |
|
200 |
+
| 0.9836 | 1200 | 0.0 | - |
|
201 |
+
| 0.0008 | 1 | 0.0 | - |
|
202 |
+
| 0.0410 | 50 | 0.0 | - |
|
203 |
+
| 0.0820 | 100 | 0.0003 | - |
|
204 |
+
| 0.1230 | 150 | 0.0005 | - |
|
205 |
+
| 0.1639 | 200 | 0.0013 | - |
|
206 |
+
| 0.2049 | 250 | 0.0008 | - |
|
207 |
+
| 0.2459 | 300 | 0.0 | - |
|
208 |
+
| 0.2869 | 350 | 0.0 | - |
|
209 |
+
| 0.3279 | 400 | 0.0 | - |
|
210 |
+
| 0.3689 | 450 | 0.0 | - |
|
211 |
+
| 0.4098 | 500 | 0.0 | - |
|
212 |
+
| 0.4508 | 550 | 0.0 | - |
|
213 |
+
| 0.4918 | 600 | 0.0 | - |
|
214 |
+
| 0.5328 | 650 | 0.0 | - |
|
215 |
+
| 0.5738 | 700 | 0.0 | - |
|
216 |
+
| 0.6148 | 750 | 0.0 | - |
|
217 |
+
| 0.6557 | 800 | 0.008 | - |
|
218 |
+
| 0.6967 | 850 | 0.0285 | - |
|
219 |
+
| 0.7377 | 900 | 0.012 | - |
|
220 |
+
| 0.7787 | 950 | 0.0073 | - |
|
221 |
+
| 0.8197 | 1000 | 0.0013 | - |
|
222 |
+
| 0.8607 | 1050 | 0.0 | - |
|
223 |
+
| 0.9016 | 1100 | 0.0 | - |
|
224 |
+
| 0.9426 | 1150 | 0.0 | - |
|
225 |
+
| 0.9836 | 1200 | 0.0013 | - |
|
226 |
+
| 1.0246 | 1250 | 0.0013 | - |
|
227 |
+
| 1.0656 | 1300 | 0.0 | - |
|
228 |
+
| 1.1066 | 1350 | 0.0 | - |
|
229 |
+
| 1.1475 | 1400 | 0.0 | - |
|
230 |
+
| 1.1885 | 1450 | 0.0 | - |
|
231 |
+
| 1.2295 | 1500 | 0.0 | - |
|
232 |
+
| 1.2705 | 1550 | 0.0 | - |
|
233 |
+
| 1.3115 | 1600 | 0.0 | - |
|
234 |
+
| 1.3525 | 1650 | 0.0022 | - |
|
235 |
+
| 1.3934 | 1700 | 0.0 | - |
|
236 |
+
| 1.4344 | 1750 | 0.0 | - |
|
237 |
+
| 1.4754 | 1800 | 0.0 | - |
|
238 |
+
| 1.5164 | 1850 | 0.0013 | - |
|
239 |
+
| 1.5574 | 1900 | 0.0 | - |
|
240 |
+
| 1.5984 | 1950 | 0.0 | - |
|
241 |
+
| 1.6393 | 2000 | 0.0 | - |
|
242 |
+
| 1.6803 | 2050 | 0.0 | - |
|
243 |
+
| 1.7213 | 2100 | 0.0 | - |
|
244 |
+
| 1.7623 | 2150 | 0.0 | - |
|
245 |
+
| 1.8033 | 2200 | 0.0 | - |
|
246 |
+
| 1.8443 | 2250 | 0.0048 | - |
|
247 |
+
| 1.8852 | 2300 | 0.0023 | - |
|
248 |
+
| 1.9262 | 2350 | 0.0049 | - |
|
249 |
+
| 1.9672 | 2400 | 0.0012 | - |
|
250 |
+
| 2.0082 | 2450 | 0.0 | - |
|
251 |
+
| 2.0492 | 2500 | 0.0 | - |
|
252 |
+
| 2.0902 | 2550 | 0.0 | - |
|
253 |
+
| 2.1311 | 2600 | 0.0 | - |
|
254 |
+
| 2.1721 | 2650 | 0.0 | - |
|
255 |
+
| 2.2131 | 2700 | 0.0 | - |
|
256 |
+
| 2.2541 | 2750 | 0.0 | - |
|
257 |
+
| 2.2951 | 2800 | 0.0 | - |
|
258 |
+
| 2.3361 | 2850 | 0.0 | - |
|
259 |
+
| 2.3770 | 2900 | 0.0 | - |
|
260 |
+
| 2.4180 | 2950 | 0.0 | - |
|
261 |
+
| 2.4590 | 3000 | 0.0 | - |
|
262 |
+
| 2.5 | 3050 | 0.0 | - |
|
263 |
+
| 2.5410 | 3100 | 0.0 | - |
|
264 |
+
| 2.5820 | 3150 | 0.0 | - |
|
265 |
+
| 2.6230 | 3200 | 0.0 | - |
|
266 |
+
| 2.6639 | 3250 | 0.0 | - |
|
267 |
+
| 2.7049 | 3300 | 0.0 | - |
|
268 |
+
| 2.7459 | 3350 | 0.0 | - |
|
269 |
+
| 2.7869 | 3400 | 0.0 | - |
|
270 |
+
| 2.8279 | 3450 | 0.0 | - |
|
271 |
+
| 2.8689 | 3500 | 0.0 | - |
|
272 |
+
| 2.9098 | 3550 | 0.0007 | - |
|
273 |
+
| 2.9508 | 3600 | 0.0 | - |
|
274 |
+
| 2.9918 | 3650 | 0.0 | - |
|
275 |
+
|
276 |
+
### Framework Versions
|
277 |
+
- Python: 3.10.12
|
278 |
+
- SetFit: 1.1.0
|
279 |
+
- Sentence Transformers: 3.2.1
|
280 |
+
- Transformers: 4.42.2
|
281 |
+
- PyTorch: 2.5.1+cu121
|
282 |
+
- Datasets: 3.1.0
|
283 |
+
- Tokenizers: 0.19.1
|
284 |
+
|
285 |
+
## Citation
|
286 |
+
|
287 |
+
### BibTeX
|
288 |
+
```bibtex
|
289 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
290 |
+
doi = {10.48550/ARXIV.2209.11055},
|
291 |
+
url = {https://arxiv.org/abs/2209.11055},
|
292 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
293 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
294 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
295 |
+
publisher = {arXiv},
|
296 |
+
year = {2022},
|
297 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
298 |
+
}
|
299 |
+
```
|
300 |
+
|
301 |
+
<!--
|
302 |
+
## Glossary
|
303 |
+
|
304 |
+
*Clearly define terms in order to be accessible across audiences.*
|
305 |
+
-->
|
306 |
+
|
307 |
+
<!--
|
308 |
+
## Model Card Authors
|
309 |
+
|
310 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
311 |
+
-->
|
312 |
+
|
313 |
+
<!--
|
314 |
+
## Model Card Contact
|
315 |
+
|
316 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
317 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.42.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.1",
|
4 |
+
"transformers": "4.42.2",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5466d603a44eb1be748464d98021907319092d571cd7b8b7e57aa6d54a0b09c3
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17b567d2d3e4f4a7b33f4175a6242bc6278d331376cbf850c03c0d7fd7b6c007
|
3 |
+
size 7007
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 384,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|