EuriskoMobility commited on
Commit
14e3683
1 Parent(s): b34a3d4

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: <Question> What will the ministry of tourism do to boost the flow of tourists
9
+ to the country during the holiday season? </Question> <Answer> Anticipating a
10
+ surge in holiday travel, the Ministry of Tourism is rolling out a multi-pronged
11
+ strategy to attract tourists and ensure a memorable experience. The centerpiece
12
+ is the "Festive Wonderland" campaign, transforming major cities into enchanting
13
+ winter scenes with illuminated streets, snow machines, and festive markets overflowing
14
+ with local crafts and delicacies. </Answer> <Question> Was the cost of such a
15
+ strategy announced by the ministry? </Question>
16
+ - text: <Question> How does the company offer help for parents with their children?
17
+ </Question> <Answer> At Jack Track, we understand the importance of supporting
18
+ our employees who are parents. We offer a range of assistance programs to help
19
+ parents with their children. Our comprehensive benefits package includes flexible
20
+ work schedules and remote work options, allowing parents to balance their professional
21
+ and family responsibilities effectively. </Answer> <Question> How often can we
22
+ work remotely? </Question>
23
+ - text: <Question> Is Store Manager considered rank 3 or rank 2? </Question> <Answer>
24
+ In our organization's hierarchical structure, the position of Store Manager is
25
+ considered as a Rank 2 role. </Answer> <Question> What does this level of responsibility
26
+ typically involves? </Question>
27
+ - text: <Question> How many days off do we get during Easter? </Question> <Answer>
28
+ During Easter, employees typically enjoy a generous 15-day break, which includes
29
+ weekends and public holidays. This extended period allows for ample time to relax
30
+ and celebrate the holiday season with family and friends. </Answer> <Question>
31
+ What about Christmas? </Question>
32
+ - text: <Question> What is the highest grossing movie at the box office? </Question>
33
+ <Answer> The highest-grossing movie at the box office is Avatar. </Answer> <Question>
34
+ How much money did the movie make? </Question>
35
+ metrics:
36
+ - accuracy
37
+ pipeline_tag: text-classification
38
+ library_name: setfit
39
+ inference: true
40
+ base_model: sentence-transformers/all-mpnet-base-v2
41
+ model-index:
42
+ - name: SetFit with sentence-transformers/all-mpnet-base-v2
43
+ results:
44
+ - task:
45
+ type: text-classification
46
+ name: Text Classification
47
+ dataset:
48
+ name: Unknown
49
+ type: unknown
50
+ split: test
51
+ metrics:
52
+ - type: accuracy
53
+ value: 0.9347826086956522
54
+ name: Accuracy
55
+ ---
56
+
57
+ # SetFit with sentence-transformers/all-mpnet-base-v2
58
+
59
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
60
+
61
+ The model has been trained using an efficient few-shot learning technique that involves:
62
+
63
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
64
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
65
+
66
+ ## Model Details
67
+
68
+ ### Model Description
69
+ - **Model Type:** SetFit
70
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
71
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
72
+ - **Maximum Sequence Length:** 384 tokens
73
+ - **Number of Classes:** 2 classes
74
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
75
+ <!-- - **Language:** Unknown -->
76
+ <!-- - **License:** Unknown -->
77
+
78
+ ### Model Sources
79
+
80
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
81
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
82
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
83
+
84
+ ### Model Labels
85
+ | Label | Examples |
86
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
87
+ | 1 | <ul><li>'<Question> Who was the Germany national team captain during the 2006 World cup? </Question> <Answer> Michael Ballack was the Germany national team captrain during the 2006 world cup </Answer> <Question> How old was he? </Question>'</li><li>'<Question> Who was the Germany national team captain during the 2006 World cup? </Question> <Answer> Michael Ballack was the Germany national team captrain during the 2006 world cup </Answer> <Question> Who won it back then? </Question>'</li><li>'<Question> How old was Ronaldo when he moved to Real Madrid? </Question> <Answer> Ronaldo moved to Real Madrid after leaving Inter when he was 25 years old. </Answer> <Question> What year did he leave? </Question>'</li></ul> |
88
+ | 0 | <ul><li>'<Question> Which ocean surrounds Antarctica? </Question> <Answer> The ocean that surrounds Antarctica is the Southern Ocean. </Answer> <Question> What challenges do scientists face when conducting research in Antarctica? </Question>'</li><li>'<Question> Name a country in Oceania. </Question> <Answer> A country in Oceania is Australia. </Answer> <Question> What are some of the popular tourist attractions in Oceania? </Question>'</li><li>"<Question> What's the significance of the Suez Canal? </Question> <Answer> The Suez Canal holds great importance as a crucial Egyptian waterway that links the Mediterranean Sea to the Red Sea. It plays a pivotal role in enhancing maritime trade and transportation between Europe and Asia, providing ships with a shorter and safer route compared to the arduous journey around the southern tip of Africa. </Answer> <Question> How has the Suez Canal impacted global trade? </Question>"</li></ul> |
89
+
90
+ ## Evaluation
91
+
92
+ ### Metrics
93
+ | Label | Accuracy |
94
+ |:--------|:---------|
95
+ | **all** | 0.9348 |
96
+
97
+ ## Uses
98
+
99
+ ### Direct Use for Inference
100
+
101
+ First install the SetFit library:
102
+
103
+ ```bash
104
+ pip install setfit
105
+ ```
106
+
107
+ Then you can load this model and run inference.
108
+
109
+ ```python
110
+ from setfit import SetFitModel
111
+
112
+ # Download from the 🤗 Hub
113
+ model = SetFitModel.from_pretrained("setfit_model_id")
114
+ # Run inference
115
+ preds = model("<Question> What is the highest grossing movie at the box office? </Question> <Answer> The highest-grossing movie at the box office is Avatar. </Answer> <Question> How much money did the movie make? </Question>")
116
+ ```
117
+
118
+ <!--
119
+ ### Downstream Use
120
+
121
+ *List how someone could finetune this model on their own dataset.*
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Set Metrics
145
+ | Training set | Min | Median | Max |
146
+ |:-------------|:----|:--------|:----|
147
+ | Word count | 14 | 44.4406 | 221 |
148
+
149
+ | Label | Training Sample Count |
150
+ |:------|:----------------------|
151
+ | 0 | 240 |
152
+ | 1 | 248 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (16, 16)
156
+ - num_epochs: (3, 3)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - num_iterations: 20
160
+ - body_learning_rate: (2e-05, 2e-05)
161
+ - head_learning_rate: 2e-05
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: False
167
+ - warmup_proportion: 0.1
168
+ - l2_weight: 0.01
169
+ - seed: 42
170
+ - eval_max_steps: -1
171
+ - load_best_model_at_end: False
172
+
173
+ ### Training Results
174
+ | Epoch | Step | Training Loss | Validation Loss |
175
+ |:------:|:----:|:-------------:|:---------------:|
176
+ | 0.0008 | 1 | 0.5762 | - |
177
+ | 0.0410 | 50 | 0.2742 | - |
178
+ | 0.0820 | 100 | 0.2188 | - |
179
+ | 0.1230 | 150 | 0.0586 | - |
180
+ | 0.1639 | 200 | 0.0194 | - |
181
+ | 0.2049 | 250 | 0.0028 | - |
182
+ | 0.2459 | 300 | 0.0004 | - |
183
+ | 0.2869 | 350 | 0.0003 | - |
184
+ | 0.3279 | 400 | 0.0002 | - |
185
+ | 0.3689 | 450 | 0.0001 | - |
186
+ | 0.4098 | 500 | 0.0001 | - |
187
+ | 0.4508 | 550 | 0.0001 | - |
188
+ | 0.4918 | 600 | 0.0001 | - |
189
+ | 0.5328 | 650 | 0.0006 | - |
190
+ | 0.5738 | 700 | 0.0001 | - |
191
+ | 0.6148 | 750 | 0.0001 | - |
192
+ | 0.6557 | 800 | 0.0001 | - |
193
+ | 0.6967 | 850 | 0.0001 | - |
194
+ | 0.7377 | 900 | 0.0001 | - |
195
+ | 0.7787 | 950 | 0.0001 | - |
196
+ | 0.8197 | 1000 | 0.0001 | - |
197
+ | 0.8607 | 1050 | 0.0001 | - |
198
+ | 0.9016 | 1100 | 0.0001 | - |
199
+ | 0.9426 | 1150 | 0.0001 | - |
200
+ | 0.9836 | 1200 | 0.0 | - |
201
+ | 0.0008 | 1 | 0.0 | - |
202
+ | 0.0410 | 50 | 0.0 | - |
203
+ | 0.0820 | 100 | 0.0003 | - |
204
+ | 0.1230 | 150 | 0.0005 | - |
205
+ | 0.1639 | 200 | 0.0013 | - |
206
+ | 0.2049 | 250 | 0.0008 | - |
207
+ | 0.2459 | 300 | 0.0 | - |
208
+ | 0.2869 | 350 | 0.0 | - |
209
+ | 0.3279 | 400 | 0.0 | - |
210
+ | 0.3689 | 450 | 0.0 | - |
211
+ | 0.4098 | 500 | 0.0 | - |
212
+ | 0.4508 | 550 | 0.0 | - |
213
+ | 0.4918 | 600 | 0.0 | - |
214
+ | 0.5328 | 650 | 0.0 | - |
215
+ | 0.5738 | 700 | 0.0 | - |
216
+ | 0.6148 | 750 | 0.0 | - |
217
+ | 0.6557 | 800 | 0.008 | - |
218
+ | 0.6967 | 850 | 0.0285 | - |
219
+ | 0.7377 | 900 | 0.012 | - |
220
+ | 0.7787 | 950 | 0.0073 | - |
221
+ | 0.8197 | 1000 | 0.0013 | - |
222
+ | 0.8607 | 1050 | 0.0 | - |
223
+ | 0.9016 | 1100 | 0.0 | - |
224
+ | 0.9426 | 1150 | 0.0 | - |
225
+ | 0.9836 | 1200 | 0.0013 | - |
226
+ | 1.0246 | 1250 | 0.0013 | - |
227
+ | 1.0656 | 1300 | 0.0 | - |
228
+ | 1.1066 | 1350 | 0.0 | - |
229
+ | 1.1475 | 1400 | 0.0 | - |
230
+ | 1.1885 | 1450 | 0.0 | - |
231
+ | 1.2295 | 1500 | 0.0 | - |
232
+ | 1.2705 | 1550 | 0.0 | - |
233
+ | 1.3115 | 1600 | 0.0 | - |
234
+ | 1.3525 | 1650 | 0.0022 | - |
235
+ | 1.3934 | 1700 | 0.0 | - |
236
+ | 1.4344 | 1750 | 0.0 | - |
237
+ | 1.4754 | 1800 | 0.0 | - |
238
+ | 1.5164 | 1850 | 0.0013 | - |
239
+ | 1.5574 | 1900 | 0.0 | - |
240
+ | 1.5984 | 1950 | 0.0 | - |
241
+ | 1.6393 | 2000 | 0.0 | - |
242
+ | 1.6803 | 2050 | 0.0 | - |
243
+ | 1.7213 | 2100 | 0.0 | - |
244
+ | 1.7623 | 2150 | 0.0 | - |
245
+ | 1.8033 | 2200 | 0.0 | - |
246
+ | 1.8443 | 2250 | 0.0048 | - |
247
+ | 1.8852 | 2300 | 0.0023 | - |
248
+ | 1.9262 | 2350 | 0.0049 | - |
249
+ | 1.9672 | 2400 | 0.0012 | - |
250
+ | 2.0082 | 2450 | 0.0 | - |
251
+ | 2.0492 | 2500 | 0.0 | - |
252
+ | 2.0902 | 2550 | 0.0 | - |
253
+ | 2.1311 | 2600 | 0.0 | - |
254
+ | 2.1721 | 2650 | 0.0 | - |
255
+ | 2.2131 | 2700 | 0.0 | - |
256
+ | 2.2541 | 2750 | 0.0 | - |
257
+ | 2.2951 | 2800 | 0.0 | - |
258
+ | 2.3361 | 2850 | 0.0 | - |
259
+ | 2.3770 | 2900 | 0.0 | - |
260
+ | 2.4180 | 2950 | 0.0 | - |
261
+ | 2.4590 | 3000 | 0.0 | - |
262
+ | 2.5 | 3050 | 0.0 | - |
263
+ | 2.5410 | 3100 | 0.0 | - |
264
+ | 2.5820 | 3150 | 0.0 | - |
265
+ | 2.6230 | 3200 | 0.0 | - |
266
+ | 2.6639 | 3250 | 0.0 | - |
267
+ | 2.7049 | 3300 | 0.0 | - |
268
+ | 2.7459 | 3350 | 0.0 | - |
269
+ | 2.7869 | 3400 | 0.0 | - |
270
+ | 2.8279 | 3450 | 0.0 | - |
271
+ | 2.8689 | 3500 | 0.0 | - |
272
+ | 2.9098 | 3550 | 0.0007 | - |
273
+ | 2.9508 | 3600 | 0.0 | - |
274
+ | 2.9918 | 3650 | 0.0 | - |
275
+
276
+ ### Framework Versions
277
+ - Python: 3.10.12
278
+ - SetFit: 1.1.0
279
+ - Sentence Transformers: 3.2.1
280
+ - Transformers: 4.42.2
281
+ - PyTorch: 2.5.1+cu121
282
+ - Datasets: 3.1.0
283
+ - Tokenizers: 0.19.1
284
+
285
+ ## Citation
286
+
287
+ ### BibTeX
288
+ ```bibtex
289
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
290
+ doi = {10.48550/ARXIV.2209.11055},
291
+ url = {https://arxiv.org/abs/2209.11055},
292
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
293
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
294
+ title = {Efficient Few-Shot Learning Without Prompts},
295
+ publisher = {arXiv},
296
+ year = {2022},
297
+ copyright = {Creative Commons Attribution 4.0 International}
298
+ }
299
+ ```
300
+
301
+ <!--
302
+ ## Glossary
303
+
304
+ *Clearly define terms in order to be accessible across audiences.*
305
+ -->
306
+
307
+ <!--
308
+ ## Model Card Authors
309
+
310
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
311
+ -->
312
+
313
+ <!--
314
+ ## Model Card Contact
315
+
316
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
317
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.42.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5466d603a44eb1be748464d98021907319092d571cd7b8b7e57aa6d54a0b09c3
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17b567d2d3e4f4a7b33f4175a6242bc6278d331376cbf850c03c0d7fd7b6c007
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff