--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: What will the ministry of tourism do to boost the flow of tourists to the country during the holiday season? Anticipating a surge in holiday travel, the Ministry of Tourism is rolling out a multi-pronged strategy to attract tourists and ensure a memorable experience. The centerpiece is the "Festive Wonderland" campaign, transforming major cities into enchanting winter scenes with illuminated streets, snow machines, and festive markets overflowing with local crafts and delicacies. Was the cost of such a strategy announced by the ministry? - text: How does the company offer help for parents with their children? At Jack Track, we understand the importance of supporting our employees who are parents. We offer a range of assistance programs to help parents with their children. Our comprehensive benefits package includes flexible work schedules and remote work options, allowing parents to balance their professional and family responsibilities effectively. How often can we work remotely? - text: Is Store Manager considered rank 3 or rank 2? In our organization's hierarchical structure, the position of Store Manager is considered as a Rank 2 role. What does this level of responsibility typically involves? - text: How many days off do we get during Easter? During Easter, employees typically enjoy a generous 15-day break, which includes weekends and public holidays. This extended period allows for ample time to relax and celebrate the holiday season with family and friends. What about Christmas? - text: What is the highest grossing movie at the box office? The highest-grossing movie at the box office is Avatar. How much money did the movie make? metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/all-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9347826086956522 name: Accuracy --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9348 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model(" What is the highest grossing movie at the box office? The highest-grossing movie at the box office is Avatar. How much money did the movie make? ") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 14 | 44.4406 | 221 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 240 | | 1 | 248 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0008 | 1 | 0.5762 | - | | 0.0410 | 50 | 0.2742 | - | | 0.0820 | 100 | 0.2188 | - | | 0.1230 | 150 | 0.0586 | - | | 0.1639 | 200 | 0.0194 | - | | 0.2049 | 250 | 0.0028 | - | | 0.2459 | 300 | 0.0004 | - | | 0.2869 | 350 | 0.0003 | - | | 0.3279 | 400 | 0.0002 | - | | 0.3689 | 450 | 0.0001 | - | | 0.4098 | 500 | 0.0001 | - | | 0.4508 | 550 | 0.0001 | - | | 0.4918 | 600 | 0.0001 | - | | 0.5328 | 650 | 0.0006 | - | | 0.5738 | 700 | 0.0001 | - | | 0.6148 | 750 | 0.0001 | - | | 0.6557 | 800 | 0.0001 | - | | 0.6967 | 850 | 0.0001 | - | | 0.7377 | 900 | 0.0001 | - | | 0.7787 | 950 | 0.0001 | - | | 0.8197 | 1000 | 0.0001 | - | | 0.8607 | 1050 | 0.0001 | - | | 0.9016 | 1100 | 0.0001 | - | | 0.9426 | 1150 | 0.0001 | - | | 0.9836 | 1200 | 0.0 | - | | 0.0008 | 1 | 0.0 | - | | 0.0410 | 50 | 0.0 | - | | 0.0820 | 100 | 0.0003 | - | | 0.1230 | 150 | 0.0005 | - | | 0.1639 | 200 | 0.0013 | - | | 0.2049 | 250 | 0.0008 | - | | 0.2459 | 300 | 0.0 | - | | 0.2869 | 350 | 0.0 | - | | 0.3279 | 400 | 0.0 | - | | 0.3689 | 450 | 0.0 | - | | 0.4098 | 500 | 0.0 | - | | 0.4508 | 550 | 0.0 | - | | 0.4918 | 600 | 0.0 | - | | 0.5328 | 650 | 0.0 | - | | 0.5738 | 700 | 0.0 | - | | 0.6148 | 750 | 0.0 | - | | 0.6557 | 800 | 0.008 | - | | 0.6967 | 850 | 0.0285 | - | | 0.7377 | 900 | 0.012 | - | | 0.7787 | 950 | 0.0073 | - | | 0.8197 | 1000 | 0.0013 | - | | 0.8607 | 1050 | 0.0 | - | | 0.9016 | 1100 | 0.0 | - | | 0.9426 | 1150 | 0.0 | - | | 0.9836 | 1200 | 0.0013 | - | | 1.0246 | 1250 | 0.0013 | - | | 1.0656 | 1300 | 0.0 | - | | 1.1066 | 1350 | 0.0 | - | | 1.1475 | 1400 | 0.0 | - | | 1.1885 | 1450 | 0.0 | - | | 1.2295 | 1500 | 0.0 | - | | 1.2705 | 1550 | 0.0 | - | | 1.3115 | 1600 | 0.0 | - | | 1.3525 | 1650 | 0.0022 | - | | 1.3934 | 1700 | 0.0 | - | | 1.4344 | 1750 | 0.0 | - | | 1.4754 | 1800 | 0.0 | - | | 1.5164 | 1850 | 0.0013 | - | | 1.5574 | 1900 | 0.0 | - | | 1.5984 | 1950 | 0.0 | - | | 1.6393 | 2000 | 0.0 | - | | 1.6803 | 2050 | 0.0 | - | | 1.7213 | 2100 | 0.0 | - | | 1.7623 | 2150 | 0.0 | - | | 1.8033 | 2200 | 0.0 | - | | 1.8443 | 2250 | 0.0048 | - | | 1.8852 | 2300 | 0.0023 | - | | 1.9262 | 2350 | 0.0049 | - | | 1.9672 | 2400 | 0.0012 | - | | 2.0082 | 2450 | 0.0 | - | | 2.0492 | 2500 | 0.0 | - | | 2.0902 | 2550 | 0.0 | - | | 2.1311 | 2600 | 0.0 | - | | 2.1721 | 2650 | 0.0 | - | | 2.2131 | 2700 | 0.0 | - | | 2.2541 | 2750 | 0.0 | - | | 2.2951 | 2800 | 0.0 | - | | 2.3361 | 2850 | 0.0 | - | | 2.3770 | 2900 | 0.0 | - | | 2.4180 | 2950 | 0.0 | - | | 2.4590 | 3000 | 0.0 | - | | 2.5 | 3050 | 0.0 | - | | 2.5410 | 3100 | 0.0 | - | | 2.5820 | 3150 | 0.0 | - | | 2.6230 | 3200 | 0.0 | - | | 2.6639 | 3250 | 0.0 | - | | 2.7049 | 3300 | 0.0 | - | | 2.7459 | 3350 | 0.0 | - | | 2.7869 | 3400 | 0.0 | - | | 2.8279 | 3450 | 0.0 | - | | 2.8689 | 3500 | 0.0 | - | | 2.9098 | 3550 | 0.0007 | - | | 2.9508 | 3600 | 0.0 | - | | 2.9918 | 3650 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.42.2 - PyTorch: 2.5.1+cu121 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```