Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +96 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.66 +/- 0.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b120f444574c2cc2a7f3ead74e7a31334ca0f42bfeb8162a483ac1c8549c66c
|
3 |
+
size 109282
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8191b61c10>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8191b64180>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
26 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
27 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
28 |
+
"_shape": null,
|
29 |
+
"dtype": null,
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
3
|
38 |
+
],
|
39 |
+
"low": "[-1. -1. -1.]",
|
40 |
+
"high": "[1. 1. 1.]",
|
41 |
+
"bounded_below": "[ True True True]",
|
42 |
+
"bounded_above": "[ True True True]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 1000000,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680265039469848946,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAriSRPuRQrbzCkQQ/riSRPuRQrbzCkQQ/riSRPuRQrbzCkQQ/riSRPuRQrbzCkQQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASS4DvlVOjL8IGVs/oLO0v7Y/vz9hQ7W/048EP9Gttb/uj6k/F7favzwHIT6vo2A/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACuJJE+5FCtvMKRBD8Ft1k9cvVJuy14Rj2uJJE+5FCtvMKRBD8Ft1k9cvVJuy14Rj2uJJE+5FCtvMKRBD8Ft1k9cvVJuy14Rj2uJJE+5FCtvMKRBD8Ft1k9cvVJuy14Rj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.28348297 -0.02115674 0.5178491 ]\n [ 0.28348297 -0.02115674 0.5178491 ]\n [ 0.28348297 -0.02115674 0.5178491 ]\n [ 0.28348297 -0.02115674 0.5178491 ]]",
|
62 |
+
"desired_goal": "[[-0.12810625 -1.0961405 0.8558507 ]\n [-1.4117317 1.4941318 -1.4161187 ]\n [ 0.5178196 -1.419367 1.3247049 ]\n [-1.7087125 0.15725416 0.8774976 ]]",
|
63 |
+
"observation": "[[ 0.28348297 -0.02115674 0.5178491 0.05315306 -0.00308165 0.04845445]\n [ 0.28348297 -0.02115674 0.5178491 0.05315306 -0.00308165 0.04845445]\n [ 0.28348297 -0.02115674 0.5178491 0.05315306 -0.00308165 0.04845445]\n [ 0.28348297 -0.02115674 0.5178491 0.05315306 -0.00308165 0.04845445]]"
|
64 |
+
},
|
65 |
+
"_last_episode_starts": {
|
66 |
+
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
68 |
+
},
|
69 |
+
"_last_original_obs": {
|
70 |
+
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHxcYPRfW4L27+DA9V4UtvXfhCT4ZZQo9GkASPkFuXLoEYE4+98gFvnF9AD4LUHI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 0.03713142 -0.10978334 0.04320596]\n [-0.04236349 0.13464914 0.03378782]\n [ 0.14282265 -0.00084088 0.20153815]\n [-0.13064943 0.12547852 0.23663346]]",
|
74 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
+
},
|
76 |
+
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
+
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": 0.0,
|
80 |
+
"ep_info_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/+vctBkn4r+UhpRSlIwBbJRLMowBdJRHQKyeAgElme11fZQoaAZoCWgPQwjptkQuOAPiv5SGlFKUaBVLMmgWR0CsnZQg1WKedX2UKGgGaAloD0MIKsb5m1CI6L+UhpRSlGgVSzJoFkdArJ1E7KaG6HV9lChoBmgJaA9DCJZbWg2Je+G/lIaUUpRoFUsyaBZHQKyc7YbsF+x1fZQoaAZoCWgPQwgIkncOZejwv5SGlFKUaBVLMmgWR0Csn1s/hVENdX2UKGgGaAloD0MIVz7L8+Cu87+UhpRSlGgVSzJoFkdArJ7tYuCf6HV9lChoBmgJaA9DCDvI68Gk+PC/lIaUUpRoFUsyaBZHQKyenj81n/V1fZQoaAZoCWgPQwidoE0OnzTyv5SGlFKUaBVLMmgWR0CsnkbqyGBXdX2UKGgGaAloD0MI0t9L4UGz6b+UhpRSlGgVSzJoFkdArKCqAc1fmnV9lChoBmgJaA9DCO9xpgnbz+6/lIaUUpRoFUsyaBZHQKygPCHh0hh1fZQoaAZoCWgPQwgBTBk4oKXVv5SGlFKUaBVLMmgWR0Csn+z6ab4KdX2UKGgGaAloD0MIhetRuB6F47+UhpRSlGgVSzJoFkdArJ+Wkxh2GXV9lChoBmgJaA9DCBzsTQzJyfO/lIaUUpRoFUsyaBZHQKyh7zK9wm51fZQoaAZoCWgPQwiJfm399B/gv5SGlFKUaBVLMmgWR0CsoYFINEw4dX2UKGgGaAloD0MIIvsgy4IJ67+UhpRSlGgVSzJoFkdArKEydDpkgHV9lChoBmgJaA9DCOzBpPj4BOe/lIaUUpRoFUsyaBZHQKyg3Tgl4Tt1fZQoaAZoCWgPQwj5Tsx6MRTiv5SGlFKUaBVLMmgWR0Cso0Reb/fgdX2UKGgGaAloD0MIUp55Oew+9L+UhpRSlGgVSzJoFkdArKLWd5IH1XV9lChoBmgJaA9DCFvptdlYCfC/lIaUUpRoFUsyaBZHQKyihxn3+Mt1fZQoaAZoCWgPQwh+qgoNxDLyv5SGlFKUaBVLMmgWR0Csoi+ERJ2/dX2UKGgGaAloD0MIsWzmkNRC5b+UhpRSlGgVSzJoFkdArKSGPtD2J3V9lChoBmgJaA9DCO61oPfG0Pa/lIaUUpRoFUsyaBZHQKykGJ/G2kV1fZQoaAZoCWgPQwgz+WabG1Pmv5SGlFKUaBVLMmgWR0Cso8nVf/m1dX2UKGgGaAloD0MISrIOR1fp5b+UhpRSlGgVSzJoFkdArKNzGkvboXV9lChoBmgJaA9DCCMShZZ1/+C/lIaUUpRoFUsyaBZHQKyl1yU9pyp1fZQoaAZoCWgPQwiiDcAGRIjpv5SGlFKUaBVLMmgWR0CspWlJHy3DdX2UKGgGaAloD0MImgewyK8f5r+UhpRSlGgVSzJoFkdArKUaM1jy4HV9lChoBmgJaA9DCC7L12X4T+e/lIaUUpRoFUsyaBZHQKykwtdRiw11fZQoaAZoCWgPQwjaOc0C7Q7fv5SGlFKUaBVLMmgWR0Csp9AiV0LddX2UKGgGaAloD0MI5PkMqDcj5r+UhpRSlGgVSzJoFkdArKdjK/20zHV9lChoBmgJaA9DCJfIBWfwd+S/lIaUUpRoFUsyaBZHQKynFIkJKJ51fZQoaAZoCWgPQwi5quy7Ivjpv5SGlFKUaBVLMmgWR0Cspr4zi0fHdX2UKGgGaAloD0MIQEzChTwC47+UhpRSlGgVSzJoFkdArKoxSeiBXnV9lChoBmgJaA9DCI6PFmcMc+q/lIaUUpRoFUsyaBZHQKypxDziCJ51fZQoaAZoCWgPQwipv15hwf3uv5SGlFKUaBVLMmgWR0CsqXeRYA80dX2UKGgGaAloD0MIXd4crtWe6L+UhpRSlGgVSzJoFkdArKkhnYg7o3V9lChoBmgJaA9DCDKwjuOHyuq/lIaUUpRoFUsyaBZHQKysh2/zreJ1fZQoaAZoCWgPQwheL00R4PTbv5SGlFKUaBVLMmgWR0CsrBzUAks0dX2UKGgGaAloD0MIeM+B5QiZ5L+UhpRSlGgVSzJoFkdArKvO7OE/S3V9lChoBmgJaA9DCN4BnrRwGfK/lIaUUpRoFUsyaBZHQKyreN1hb4d1fZQoaAZoCWgPQwh/oNy271HVv5SGlFKUaBVLMmgWR0Csrs/IKc/ddX2UKGgGaAloD0MISb2nctpT3L+UhpRSlGgVSzJoFkdArK5j1VYISnV9lChoBmgJaA9DCIQNT6+U5e6/lIaUUpRoFUsyaBZHQKyuFjVhCt11fZQoaAZoCWgPQwiA1CZO7nfyv5SGlFKUaBVLMmgWR0CsrcBGYrrgdX2UKGgGaAloD0MI+fiE7LyN3b+UhpRSlGgVSzJoFkdArLFL9S/CZXV9lChoBmgJaA9DCFfp7jobsvC/lIaUUpRoFUsyaBZHQKyw34QjD9B1fZQoaAZoCWgPQwhNSdbh6Krnv5SGlFKUaBVLMmgWR0CssJGetjkNdX2UKGgGaAloD0MIZLK4/8j047+UhpRSlGgVSzJoFkdArLA7m6oVEnV9lChoBmgJaA9DCIem7PSDuvK/lIaUUpRoFUsyaBZHQKyy7R2r4nF1fZQoaAZoCWgPQwgD7Q4pBsjwv5SGlFKUaBVLMmgWR0Cssn8xKxs3dX2UKGgGaAloD0MI38DkRpG16b+UhpRSlGgVSzJoFkdArLIwEjgQ6XV9lChoBmgJaA9DCHzVyoRf6te/lIaUUpRoFUsyaBZHQKyx2KCQLeB1fZQoaAZoCWgPQwg+PEuQEVDZv5SGlFKUaBVLMmgWR0CstDawt8NQdX2UKGgGaAloD0MIfZQRF4DG6r+UhpRSlGgVSzJoFkdArLPJEx7AtXV9lChoBmgJaA9DCCQp6WFo9eO/lIaUUpRoFUsyaBZHQKyzee2/i5x1fZQoaAZoCWgPQwi3DDhLyTL0v5SGlFKUaBVLMmgWR0CssyJZOi35dX2UKGgGaAloD0MISu6wicxc7L+UhpRSlGgVSzJoFkdArLWaq0dBB3V9lChoBmgJaA9DCO7PRUPGY/i/lIaUUpRoFUsyaBZHQKy1LHwPRRd1fZQoaAZoCWgPQwi8W1mis4z3v5SGlFKUaBVLMmgWR0CstNz5O8CgdX2UKGgGaAloD0MIBaInZVKD87+UhpRSlGgVSzJoFkdArLSGuPmxMXV9lChoBmgJaA9DCJyMKsO4G9+/lIaUUpRoFUsyaBZHQKy27Lytmth1fZQoaAZoCWgPQwiR1ELJ5NTev5SGlFKUaBVLMmgWR0Cstn7tRekYdX2UKGgGaAloD0MI22lrRDAO5L+UhpRSlGgVSzJoFkdArLYvs1KoRHV9lChoBmgJaA9DCImWPJ6WH96/lIaUUpRoFUsyaBZHQKy12G7Bfrt1fZQoaAZoCWgPQwiCO1CnPLrkv5SGlFKUaBVLMmgWR0CsuC+mWMS9dX2UKGgGaAloD0MIkLxzKEPV5r+UhpRSlGgVSzJoFkdArLfBokAxSHV9lChoBmgJaA9DCOvm4m97AuG/lIaUUpRoFUsyaBZHQKy3ci7kGRp1fZQoaAZoCWgPQwjP+L64VCXpv5SGlFKUaBVLMmgWR0CstxqvFFUidX2UKGgGaAloD0MIG/Sltz+X4r+UhpRSlGgVSzJoFkdArLl3nlnyu3V9lChoBmgJaA9DCA9Iwr6dROu/lIaUUpRoFUsyaBZHQKy5Cd3B55Z1fZQoaAZoCWgPQwiYamYtBSTov5SGlFKUaBVLMmgWR0CsuLrB0p3HdX2UKGgGaAloD0MIV3kCYafY6r+UhpRSlGgVSzJoFkdArLhjjaPCEnV9lChoBmgJaA9DCLDHREqzeeK/lIaUUpRoFUsyaBZHQKy6swpvxYt1fZQoaAZoCWgPQwg2AvG6fsHlv5SGlFKUaBVLMmgWR0CsukUd7v5QdX2UKGgGaAloD0MI8aDZdW8F97+UhpRSlGgVSzJoFkdArLn1zbN8mnV9lChoBmgJaA9DCB1VTRB1n++/lIaUUpRoFUsyaBZHQKy5nl3hXKd1fZQoaAZoCWgPQwiynITSF0LSv5SGlFKUaBVLMmgWR0Csu+9Lg4wRdX2UKGgGaAloD0MI6pYd4h+247+UhpRSlGgVSzJoFkdArLuBdt2s73V9lChoBmgJaA9DCBcrajANQ+e/lIaUUpRoFUsyaBZHQKy7MfT1CgN1fZQoaAZoCWgPQwivWpnwS/3nv5SGlFKUaBVLMmgWR0CsutqLS/j9dX2UKGgGaAloD0MIJ07udyiK5b+UhpRSlGgVSzJoFkdArL1cCxNZeXV9lChoBmgJaA9DCCfaVUj5ifO/lIaUUpRoFUsyaBZHQKy87hScbzd1fZQoaAZoCWgPQwhWKT3TS4zsv5SGlFKUaBVLMmgWR0CsvJ7oKUmldX2UKGgGaAloD0MIHjaRmQsc8L+UhpRSlGgVSzJoFkdArLxJBkZrHnV9lChoBmgJaA9DCBnFckurYfe/lIaUUpRoFUsyaBZHQKy+oxJul411fZQoaAZoCWgPQwhp4Ec17Hfiv5SGlFKUaBVLMmgWR0CsvjUlqrR0dX2UKGgGaAloD0MI63Hfap044r+UhpRSlGgVSzJoFkdArL3l5nlGPXV9lChoBmgJaA9DCMtKk1LQ7fe/lIaUUpRoFUsyaBZHQKy9jpDeCTV1fZQoaAZoCWgPQwh4CU59IHnfv5SGlFKUaBVLMmgWR0CswBQY1pCbdX2UKGgGaAloD0MIqWis/Z3t+L+UhpRSlGgVSzJoFkdArL+nMB6rvXV9lChoBmgJaA9DCC6QoPgx5uq/lIaUUpRoFUsyaBZHQKy/V/Khcqx1fZQoaAZoCWgPQwg1Y9F0djLqv5SGlFKUaBVLMmgWR0CsvwB3iaRZdX2UKGgGaAloD0MIwCFUqdkD5b+UhpRSlGgVSzJoFkdArMGIaR6ni3V9lChoBmgJaA9DCGQipdk8DuO/lIaUUpRoFUsyaBZHQKzBGlQ/HHZ1fZQoaAZoCWgPQwgEBHP0+L3Tv5SGlFKUaBVLMmgWR0CswMsP8Q7LdX2UKGgGaAloD0MIud+hKNAn9b+UhpRSlGgVSzJoFkdArMB0ry1/lXV9lChoBmgJaA9DCCWVKeYgaOW/lIaUUpRoFUsyaBZHQKzC2rYoRZl1fZQoaAZoCWgPQwhVv9L58Kzpv5SGlFKUaBVLMmgWR0CswmzN+so2dX2UKGgGaAloD0MIuTe/YaJB0r+UhpRSlGgVSzJoFkdArMIdiQT24HV9lChoBmgJaA9DCNap8j0jEeK/lIaUUpRoFUsyaBZHQKzBxkMCtA91ZS4="
|
83 |
+
},
|
84 |
+
"ep_success_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
+
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
+
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
+
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
+
"max_grad_norm": 0.5,
|
95 |
+
"normalize_advantage": false
|
96 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:808e00c04921fd91471aba3f0fd82bbc720fd399f5321850a2ff4e599181ad5f
|
3 |
+
size 45310
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ace056da639dd4100712719ff32dd157d78501f9988978ac7a286ab4537fb8c5
|
3 |
+
size 46590
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8191b61c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8191b64180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680265039469848946, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAriSRPuRQrbzCkQQ/riSRPuRQrbzCkQQ/riSRPuRQrbzCkQQ/riSRPuRQrbzCkQQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASS4DvlVOjL8IGVs/oLO0v7Y/vz9hQ7W/048EP9Gttb/uj6k/F7favzwHIT6vo2A/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACuJJE+5FCtvMKRBD8Ft1k9cvVJuy14Rj2uJJE+5FCtvMKRBD8Ft1k9cvVJuy14Rj2uJJE+5FCtvMKRBD8Ft1k9cvVJuy14Rj2uJJE+5FCtvMKRBD8Ft1k9cvVJuy14Rj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.28348297 -0.02115674 0.5178491 ]\n [ 0.28348297 -0.02115674 0.5178491 ]\n [ 0.28348297 -0.02115674 0.5178491 ]\n [ 0.28348297 -0.02115674 0.5178491 ]]", "desired_goal": "[[-0.12810625 -1.0961405 0.8558507 ]\n [-1.4117317 1.4941318 -1.4161187 ]\n [ 0.5178196 -1.419367 1.3247049 ]\n [-1.7087125 0.15725416 0.8774976 ]]", "observation": "[[ 0.28348297 -0.02115674 0.5178491 0.05315306 -0.00308165 0.04845445]\n [ 0.28348297 -0.02115674 0.5178491 0.05315306 -0.00308165 0.04845445]\n [ 0.28348297 -0.02115674 0.5178491 0.05315306 -0.00308165 0.04845445]\n [ 0.28348297 -0.02115674 0.5178491 0.05315306 -0.00308165 0.04845445]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHxcYPRfW4L27+DA9V4UtvXfhCT4ZZQo9GkASPkFuXLoEYE4+98gFvnF9AD4LUHI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03713142 -0.10978334 0.04320596]\n [-0.04236349 0.13464914 0.03378782]\n [ 0.14282265 -0.00084088 0.20153815]\n [-0.13064943 0.12547852 0.23663346]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/+vctBkn4r+UhpRSlIwBbJRLMowBdJRHQKyeAgElme11fZQoaAZoCWgPQwjptkQuOAPiv5SGlFKUaBVLMmgWR0CsnZQg1WKedX2UKGgGaAloD0MIKsb5m1CI6L+UhpRSlGgVSzJoFkdArJ1E7KaG6HV9lChoBmgJaA9DCJZbWg2Je+G/lIaUUpRoFUsyaBZHQKyc7YbsF+x1fZQoaAZoCWgPQwgIkncOZejwv5SGlFKUaBVLMmgWR0Csn1s/hVENdX2UKGgGaAloD0MIVz7L8+Cu87+UhpRSlGgVSzJoFkdArJ7tYuCf6HV9lChoBmgJaA9DCDvI68Gk+PC/lIaUUpRoFUsyaBZHQKyenj81n/V1fZQoaAZoCWgPQwidoE0OnzTyv5SGlFKUaBVLMmgWR0CsnkbqyGBXdX2UKGgGaAloD0MI0t9L4UGz6b+UhpRSlGgVSzJoFkdArKCqAc1fmnV9lChoBmgJaA9DCO9xpgnbz+6/lIaUUpRoFUsyaBZHQKygPCHh0hh1fZQoaAZoCWgPQwgBTBk4oKXVv5SGlFKUaBVLMmgWR0Csn+z6ab4KdX2UKGgGaAloD0MIhetRuB6F47+UhpRSlGgVSzJoFkdArJ+Wkxh2GXV9lChoBmgJaA9DCBzsTQzJyfO/lIaUUpRoFUsyaBZHQKyh7zK9wm51fZQoaAZoCWgPQwiJfm399B/gv5SGlFKUaBVLMmgWR0CsoYFINEw4dX2UKGgGaAloD0MIIvsgy4IJ67+UhpRSlGgVSzJoFkdArKEydDpkgHV9lChoBmgJaA9DCOzBpPj4BOe/lIaUUpRoFUsyaBZHQKyg3Tgl4Tt1fZQoaAZoCWgPQwj5Tsx6MRTiv5SGlFKUaBVLMmgWR0Cso0Reb/fgdX2UKGgGaAloD0MIUp55Oew+9L+UhpRSlGgVSzJoFkdArKLWd5IH1XV9lChoBmgJaA9DCFvptdlYCfC/lIaUUpRoFUsyaBZHQKyihxn3+Mt1fZQoaAZoCWgPQwh+qgoNxDLyv5SGlFKUaBVLMmgWR0Csoi+ERJ2/dX2UKGgGaAloD0MIsWzmkNRC5b+UhpRSlGgVSzJoFkdArKSGPtD2J3V9lChoBmgJaA9DCO61oPfG0Pa/lIaUUpRoFUsyaBZHQKykGJ/G2kV1fZQoaAZoCWgPQwgz+WabG1Pmv5SGlFKUaBVLMmgWR0Cso8nVf/m1dX2UKGgGaAloD0MISrIOR1fp5b+UhpRSlGgVSzJoFkdArKNzGkvboXV9lChoBmgJaA9DCCMShZZ1/+C/lIaUUpRoFUsyaBZHQKyl1yU9pyp1fZQoaAZoCWgPQwiiDcAGRIjpv5SGlFKUaBVLMmgWR0CspWlJHy3DdX2UKGgGaAloD0MImgewyK8f5r+UhpRSlGgVSzJoFkdArKUaM1jy4HV9lChoBmgJaA9DCC7L12X4T+e/lIaUUpRoFUsyaBZHQKykwtdRiw11fZQoaAZoCWgPQwjaOc0C7Q7fv5SGlFKUaBVLMmgWR0Csp9AiV0LddX2UKGgGaAloD0MI5PkMqDcj5r+UhpRSlGgVSzJoFkdArKdjK/20zHV9lChoBmgJaA9DCJfIBWfwd+S/lIaUUpRoFUsyaBZHQKynFIkJKJ51fZQoaAZoCWgPQwi5quy7Ivjpv5SGlFKUaBVLMmgWR0Cspr4zi0fHdX2UKGgGaAloD0MIQEzChTwC47+UhpRSlGgVSzJoFkdArKoxSeiBXnV9lChoBmgJaA9DCI6PFmcMc+q/lIaUUpRoFUsyaBZHQKypxDziCJ51fZQoaAZoCWgPQwipv15hwf3uv5SGlFKUaBVLMmgWR0CsqXeRYA80dX2UKGgGaAloD0MIXd4crtWe6L+UhpRSlGgVSzJoFkdArKkhnYg7o3V9lChoBmgJaA9DCDKwjuOHyuq/lIaUUpRoFUsyaBZHQKysh2/zreJ1fZQoaAZoCWgPQwheL00R4PTbv5SGlFKUaBVLMmgWR0CsrBzUAks0dX2UKGgGaAloD0MIeM+B5QiZ5L+UhpRSlGgVSzJoFkdArKvO7OE/S3V9lChoBmgJaA9DCN4BnrRwGfK/lIaUUpRoFUsyaBZHQKyreN1hb4d1fZQoaAZoCWgPQwh/oNy271HVv5SGlFKUaBVLMmgWR0Csrs/IKc/ddX2UKGgGaAloD0MISb2nctpT3L+UhpRSlGgVSzJoFkdArK5j1VYISnV9lChoBmgJaA9DCIQNT6+U5e6/lIaUUpRoFUsyaBZHQKyuFjVhCt11fZQoaAZoCWgPQwiA1CZO7nfyv5SGlFKUaBVLMmgWR0CsrcBGYrrgdX2UKGgGaAloD0MI+fiE7LyN3b+UhpRSlGgVSzJoFkdArLFL9S/CZXV9lChoBmgJaA9DCFfp7jobsvC/lIaUUpRoFUsyaBZHQKyw34QjD9B1fZQoaAZoCWgPQwhNSdbh6Krnv5SGlFKUaBVLMmgWR0CssJGetjkNdX2UKGgGaAloD0MIZLK4/8j047+UhpRSlGgVSzJoFkdArLA7m6oVEnV9lChoBmgJaA9DCIem7PSDuvK/lIaUUpRoFUsyaBZHQKyy7R2r4nF1fZQoaAZoCWgPQwgD7Q4pBsjwv5SGlFKUaBVLMmgWR0Cssn8xKxs3dX2UKGgGaAloD0MI38DkRpG16b+UhpRSlGgVSzJoFkdArLIwEjgQ6XV9lChoBmgJaA9DCHzVyoRf6te/lIaUUpRoFUsyaBZHQKyx2KCQLeB1fZQoaAZoCWgPQwg+PEuQEVDZv5SGlFKUaBVLMmgWR0CstDawt8NQdX2UKGgGaAloD0MIfZQRF4DG6r+UhpRSlGgVSzJoFkdArLPJEx7AtXV9lChoBmgJaA9DCCQp6WFo9eO/lIaUUpRoFUsyaBZHQKyzee2/i5x1fZQoaAZoCWgPQwi3DDhLyTL0v5SGlFKUaBVLMmgWR0CssyJZOi35dX2UKGgGaAloD0MISu6wicxc7L+UhpRSlGgVSzJoFkdArLWaq0dBB3V9lChoBmgJaA9DCO7PRUPGY/i/lIaUUpRoFUsyaBZHQKy1LHwPRRd1fZQoaAZoCWgPQwi8W1mis4z3v5SGlFKUaBVLMmgWR0CstNz5O8CgdX2UKGgGaAloD0MIBaInZVKD87+UhpRSlGgVSzJoFkdArLSGuPmxMXV9lChoBmgJaA9DCJyMKsO4G9+/lIaUUpRoFUsyaBZHQKy27Lytmth1fZQoaAZoCWgPQwiR1ELJ5NTev5SGlFKUaBVLMmgWR0Cstn7tRekYdX2UKGgGaAloD0MI22lrRDAO5L+UhpRSlGgVSzJoFkdArLYvs1KoRHV9lChoBmgJaA9DCImWPJ6WH96/lIaUUpRoFUsyaBZHQKy12G7Bfrt1fZQoaAZoCWgPQwiCO1CnPLrkv5SGlFKUaBVLMmgWR0CsuC+mWMS9dX2UKGgGaAloD0MIkLxzKEPV5r+UhpRSlGgVSzJoFkdArLfBokAxSHV9lChoBmgJaA9DCOvm4m97AuG/lIaUUpRoFUsyaBZHQKy3ci7kGRp1fZQoaAZoCWgPQwjP+L64VCXpv5SGlFKUaBVLMmgWR0CstxqvFFUidX2UKGgGaAloD0MIG/Sltz+X4r+UhpRSlGgVSzJoFkdArLl3nlnyu3V9lChoBmgJaA9DCA9Iwr6dROu/lIaUUpRoFUsyaBZHQKy5Cd3B55Z1fZQoaAZoCWgPQwiYamYtBSTov5SGlFKUaBVLMmgWR0CsuLrB0p3HdX2UKGgGaAloD0MIV3kCYafY6r+UhpRSlGgVSzJoFkdArLhjjaPCEnV9lChoBmgJaA9DCLDHREqzeeK/lIaUUpRoFUsyaBZHQKy6swpvxYt1fZQoaAZoCWgPQwg2AvG6fsHlv5SGlFKUaBVLMmgWR0CsukUd7v5QdX2UKGgGaAloD0MI8aDZdW8F97+UhpRSlGgVSzJoFkdArLn1zbN8mnV9lChoBmgJaA9DCB1VTRB1n++/lIaUUpRoFUsyaBZHQKy5nl3hXKd1fZQoaAZoCWgPQwiynITSF0LSv5SGlFKUaBVLMmgWR0Csu+9Lg4wRdX2UKGgGaAloD0MI6pYd4h+247+UhpRSlGgVSzJoFkdArLuBdt2s73V9lChoBmgJaA9DCBcrajANQ+e/lIaUUpRoFUsyaBZHQKy7MfT1CgN1fZQoaAZoCWgPQwivWpnwS/3nv5SGlFKUaBVLMmgWR0CsutqLS/j9dX2UKGgGaAloD0MIJ07udyiK5b+UhpRSlGgVSzJoFkdArL1cCxNZeXV9lChoBmgJaA9DCCfaVUj5ifO/lIaUUpRoFUsyaBZHQKy87hScbzd1fZQoaAZoCWgPQwhWKT3TS4zsv5SGlFKUaBVLMmgWR0CsvJ7oKUmldX2UKGgGaAloD0MIHjaRmQsc8L+UhpRSlGgVSzJoFkdArLxJBkZrHnV9lChoBmgJaA9DCBnFckurYfe/lIaUUpRoFUsyaBZHQKy+oxJul411fZQoaAZoCWgPQwhp4Ec17Hfiv5SGlFKUaBVLMmgWR0CsvjUlqrR0dX2UKGgGaAloD0MI63Hfap044r+UhpRSlGgVSzJoFkdArL3l5nlGPXV9lChoBmgJaA9DCMtKk1LQ7fe/lIaUUpRoFUsyaBZHQKy9jpDeCTV1fZQoaAZoCWgPQwh4CU59IHnfv5SGlFKUaBVLMmgWR0CswBQY1pCbdX2UKGgGaAloD0MIqWis/Z3t+L+UhpRSlGgVSzJoFkdArL+nMB6rvXV9lChoBmgJaA9DCC6QoPgx5uq/lIaUUpRoFUsyaBZHQKy/V/Khcqx1fZQoaAZoCWgPQwg1Y9F0djLqv5SGlFKUaBVLMmgWR0CsvwB3iaRZdX2UKGgGaAloD0MIwCFUqdkD5b+UhpRSlGgVSzJoFkdArMGIaR6ni3V9lChoBmgJaA9DCGQipdk8DuO/lIaUUpRoFUsyaBZHQKzBGlQ/HHZ1fZQoaAZoCWgPQwgEBHP0+L3Tv5SGlFKUaBVLMmgWR0CswMsP8Q7LdX2UKGgGaAloD0MIud+hKNAn9b+UhpRSlGgVSzJoFkdArMB0ry1/lXV9lChoBmgJaA9DCCWVKeYgaOW/lIaUUpRoFUsyaBZHQKzC2rYoRZl1fZQoaAZoCWgPQwhVv9L58Kzpv5SGlFKUaBVLMmgWR0CswmzN+so2dX2UKGgGaAloD0MIuTe/YaJB0r+UhpRSlGgVSzJoFkdArMIdiQT24HV9lChoBmgJaA9DCNap8j0jEeK/lIaUUpRoFUsyaBZHQKzBxkMCtA91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (293 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.6563351018587127, "std_reward": 0.28383572856083544, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T13:20:53.459264"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ac67f05fdd12b966941a2529271b39ae87c6bc84226b0a6f69d5274fc32fb2d
|
3 |
+
size 3056
|