File size: 1,232 Bytes
b968ced 0dd3cc5 f229fea e98d7a9 b968ced a392847 b968ced 1ca6ce3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
pipeline_tag: token-classification
tags:
- named-entity-recognition
- sequence-tagger-model
widget:
- text: Mit navn er Amadeus Wolfgang, og jeg bor i Berlin
inference:
parameters:
aggregation_strategy: simple
grouped_entities: true
language:
- da
---
xlm-roberta model trained on [DaNe](https://aclanthology.org/2020.lrec-1.565/), performing 97.1 f1-Macro on test set.
| Test metric | Results |
|-------------------------|---------------------------|
| test_f1_mac_dane_ner | 0.9713183641433716 |
| test_loss_dane_ner | 0.11384682357311249 |
| test_prec_mac_dane_ner | 0.8712055087089539 |
| test_rec_mac_dane_ner | 0.8684446811676025 |
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner")
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner")
nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
example = "Mit navn er Amadeus Wolfgang, og jeg bor i Berlin"
ner_results = nlp(example)
print(ner_results)
``` |