EvanMath commited on
Commit
e386eb5
·
1 Parent(s): 16b427f
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Lunarlander-PPO1M.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d99e50e89d43e189716c729e70ceb8e2d59783ee734a357d0396fd215d27c5c5
3
+ size 143985
Lunarlander-PPO1M/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Lunarlander-PPO1M/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83cf37e200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83cf37e290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83cf37e320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83cf37e3b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f83cf37e440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f83cf37e4d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83cf37e560>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f83cf37e5f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83cf37e680>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83cf37e710>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83cf37e7a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f83cf3ce300>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651908975.6397204,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0AIz6Oj4a8ikt5OxKQH7oKxe69eI75ugAAAAAAAIA/zZwhva539roUmZk8ZTf4O50YFbxr0eI8AACAPwAAgD/aRbs96jpPPu0gqb5gg/e+S3D4vYd6l70AAAAAAAAAAEaePb6Our89p6iLPvmTrL7oSzE8K9nWPAAAAAAAAAAAs1pJPZLzrj+3kSw/OnW4vpdOorxp2Is9AAAAAAAAAABzF6C+SzzhPuASYD4sxuK+CuUmvhwVOT4AAAAAAAAAACasmL2uR6u2stqZM7pB/S7jzO05bKutswAAgD8AAIA/M2dNPPY8NrqDqkk9oVbjsg7qkbvZdsUwAACAPwAAgD+zI9M9WuJeP+2PFz2ABSq/PtBmPouBub0AAAAAAAAAAM1GQrxH9Cs+ce+gu4cL3r64Bx691PcMPAAAAAAAAAAAuqJWPpfbAT9W5Ey+B4vrvr8+tj123H29AAAAAAAAAADu35i+75RcP96sEr5ebRu/TDuovp7rTj0AAAAAAAAAABpcUD1NGdE+Q9/evbMTGb+oqi894KVgvQAAAAAAAAAAZsoUPaMMoD+iVQA+QM8bvwotNT11TK09AAAAAAAAAADm/WU9Z04VPmYQEr0mPNG+vaGkPB7D9rwAAAAAAAAAAA27TT5P74I/5MSFPmZsC78OQrA+fKoqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIukxNgncRckCUhpRSlIwBbJRL1owBdJRHQLpmbyZa3Zx1fZQoaAZoCWgPQwjrOlRT0utxQJSGlFKUaBVLj2gWR0C6ZnzLjghsdX2UKGgGaAloD0MIuLHZkSoOc0CUhpRSlGgVS9BoFkdAumaeP1ct5HV9lChoBmgJaA9DCPUtc7osa3JAlIaUUpRoFUvEaBZHQLpmzcNpdrx1fZQoaAZoCWgPQwisb2By4zJyQJSGlFKUaBVLxGgWR0C6Zs/VmSQpdX2UKGgGaAloD0MInWUWoZjocUCUhpRSlGgVS7toFkdAumcN84Pwu3V9lChoBmgJaA9DCCum0k/48HBAlIaUUpRoFUu+aBZHQLpnIm7J4jd1fZQoaAZoCWgPQwi4dw360oNyQJSGlFKUaBVLpmgWR0C6ZyQGSpzcdX2UKGgGaAloD0MI7Es2HuySbkCUhpRSlGgVS6JoFkdAumdBisny/nV9lChoBmgJaA9DCLVRnQ7kUG9AlIaUUpRoFUuyaBZHQLpntuiN83N1fZQoaAZoCWgPQwjoFORnY2twQJSGlFKUaBVL7GgWR0C6Z7uk+HJtdX2UKGgGaAloD0MI8E4+PXZpc0CUhpRSlGgVS89oFkdAumfPbdrO7nV9lChoBmgJaA9DCKOSOgEN13FAlIaUUpRoFUu6aBZHQLpn3stCiRJ1fZQoaAZoCWgPQwhWvJF5ZPdwQJSGlFKUaBVLz2gWR0C6Z+0tyxRmdX2UKGgGaAloD0MIJVryeNpHcECUhpRSlGgVS7VoFkdAumfv7vXsgXV9lChoBmgJaA9DCDIfEOiMVnJAlIaUUpRoFUulaBZHQLpn9xnnMdN1fZQoaAZoCWgPQwgpkq8EEslyQJSGlFKUaBVL22gWR0C6aDBO58SgdX2UKGgGaAloD0MIcXUAxJ0UcUCUhpRSlGgVS8hoFkdAumh1TsIE83V9lChoBmgJaA9DCFZFuMmok2FAlIaUUpRoFU3oA2gWR0C6aIfNmlImdX2UKGgGaAloD0MIVRSvsvY/ckCUhpRSlGgVS9toFkdAumijEaVD8nV9lChoBmgJaA9DCJ/HKM+8Z3BAlIaUUpRoFUu5aBZHQLpotj7Q9id1fZQoaAZoCWgPQwh6UiY1tGBvQJSGlFKUaBVLu2gWR0C6aLlschkidX2UKGgGaAloD0MI4/4j02HvcECUhpRSlGgVS79oFkdAumjfiHZbp3V9lChoBmgJaA9DCNlbyvniuHFAlIaUUpRoFUvmaBZHQLpo+JVsDW91fZQoaAZoCWgPQwh1q+ekN35xQJSGlFKUaBVLmWgWR0C6aSkDIRywdX2UKGgGaAloD0MIm6xRD9FJb0CUhpRSlGgVS6hoFkdAumk5YGMXJ3V9lChoBmgJaA9DCOC7zRvnjnBAlIaUUpRoFUu5aBZHQLppPEehf0F1fZQoaAZoCWgPQwh2+daHdexwQJSGlFKUaBVLwmgWR0C6aUnnhbW3dX2UKGgGaAloD0MImUnUC368cUCUhpRSlGgVS6doFkdAumlNBa9sanV9lChoBmgJaA9DCBpR2ht8h3FAlIaUUpRoFUvLaBZHQLppinwXqJN1fZQoaAZoCWgPQwj+LJYiuSxyQJSGlFKUaBVL2WgWR0C6aYnAqNIcdX2UKGgGaAloD0MIoMIRpBIjckCUhpRSlGgVS5xoFkdAummoeKbay3V9lChoBmgJaA9DCBno2heQcnFAlIaUUpRoFUugaBZHQLpp7K4x1xN1fZQoaAZoCWgPQwiFIt3PKaNyQJSGlFKUaBVL5WgWR0C6afxxo7FLdX2UKGgGaAloD0MICYfe4uHfckCUhpRSlGgVS75oFkdAumn8AR02cnV9lChoBmgJaA9DCAYsuYpFEHBAlIaUUpRoFUuuaBZHQLpqCDbrTph1fZQoaAZoCWgPQwgX83NDU4lzQJSGlFKUaBVLyGgWR0C6airMLWqcdX2UKGgGaAloD0MIAb9GkiD/cUCUhpRSlGgVS8BoFkdAumpZx82Ji3V9lChoBmgJaA9DCGa/7nTnsnBAlIaUUpRoFUujaBZHQLpqkBUaQ3h1fZQoaAZoCWgPQwgw8x38RIlxQJSGlFKUaBVL0mgWR0C6apoNiH6/dX2UKGgGaAloD0MI+P9xwkTIcECUhpRSlGgVS6poFkdAumqiYXwb2nV9lChoBmgJaA9DCKUUdHsJT3NAlIaUUpRoFUu4aBZHQLpqq0qH4491fZQoaAZoCWgPQwi5wyYys3JwQJSGlFKUaBVLu2gWR0C6arOirT6SdX2UKGgGaAloD0MIWtb9Y6EZckCUhpRSlGgVS9xoFkdAumrd68g6l3V9lChoBmgJaA9DCIviVda2bnJAlIaUUpRoFUvJaBZHQLprGzT4L1F1fZQoaAZoCWgPQwggls0cEkBxQJSGlFKUaBVLz2gWR0C6a0m3jMmndX2UKGgGaAloD0MIOdbFbfT6cUCUhpRSlGgVS8FoFkdAumt1E0BOpXV9lChoBmgJaA9DCCnLEMe6n3FAlIaUUpRoFUu/aBZHQLprf2gFotd1fZQoaAZoCWgPQwjjbaXXJrJyQJSGlFKUaBVLyGgWR0C6a5VENOM3dX2UKGgGaAloD0MI97GC38YxcUCUhpRSlGgVS85oFkdAumutfw7T2HV9lChoBmgJaA9DCJ4I4jxcYnFAlIaUUpRoFUu5aBZHQLpr0nSfDk51fZQoaAZoCWgPQwgJMgIqnGBzQJSGlFKUaBVL4mgWR0C6a/4YaYNRdX2UKGgGaAloD0MImGw82GISc0CUhpRSlGgVS61oFkdAumwHmW+oL3V9lChoBmgJaA9DCPcGX5gMgnFAlIaUUpRoFUvBaBZHQLpsIK8+Ro11fZQoaAZoCWgPQwh8Yp0qX9VwQJSGlFKUaBVLvmgWR0C6bCShvitJdX2UKGgGaAloD0MIPIidKTSycUCUhpRSlGgVS8hoFkdAumxVMK1G9nV9lChoBmgJaA9DCHIVi9/UGHRAlIaUUpRoFUvGaBZHQLpsgQwK0D51fZQoaAZoCWgPQwg5Kcx7nMpyQJSGlFKUaBVLsWgWR0C6bJnJDE3sdX2UKGgGaAloD0MInUZaKu/Gc0CUhpRSlGgVS/1oFkdAumy7mlqJuXV9lChoBmgJaA9DCPT4vU1/2G9AlIaUUpRoFUueaBZHQLps0zsyBTZ1fZQoaAZoCWgPQwiHakqyjhdyQJSGlFKUaBVLxmgWR0C6bPDHsC1adX2UKGgGaAloD0MIfhmMEUmtcUCUhpRSlGgVS5toFkdAumz34FiazHV9lChoBmgJaA9DCE3WqIfoXHJAlIaUUpRoFUu9aBZHQLptCFR51Nh1fZQoaAZoCWgPQwjr/rEQnThvQJSGlFKUaBVLs2gWR0C6bRBCMPz4dX2UKGgGaAloD0MIgGCOHj9yckCUhpRSlGgVS6doFkdAum1V+EytWHV9lChoBmgJaA9DCP8EFyvqPmdAlIaUUpRoFU3oA2gWR0C6bViAMDwIdX2UKGgGaAloD0MI01CjkGQ5b0CUhpRSlGgVS6loFkdAum1ih24d63V9lChoBmgJaA9DCLJiuDoAt3JAlIaUUpRoFUvFaBZHQLpta7qptJp1fZQoaAZoCWgPQwgEcLN4MTJyQJSGlFKUaBVLo2gWR0C6bWvXkHUudX2UKGgGaAloD0MIM6SK4hV3cUCUhpRSlGgVS6loFkdAum14YixFAnV9lChoBmgJaA9DCHQIHAk0GXNAlIaUUpRoFUu1aBZHQLpt9xfOUt91fZQoaAZoCWgPQwhWuyaktbBxQJSGlFKUaBVL3WgWR0C6bgiH2ys0dX2UKGgGaAloD0MIWaSJd0ATckCUhpRSlGgVS9FoFkdAum4a1iONpHV9lChoBmgJaA9DCAtjC0EOvXJAlIaUUpRoFUvRaBZHQLpuUcvduYR1fZQoaAZoCWgPQwjwFHKlngNvQJSGlFKUaBVLqGgWR0C6blVQQ+UydX2UKGgGaAloD0MIMuauJaSycUCUhpRSlGgVS8JoFkdAum5qPbO/tnV9lChoBmgJaA9DCIS3ByEggHNAlIaUUpRoFUvCaBZHQLpucHiWE9N1fZQoaAZoCWgPQwjG4cyvJu5wQJSGlFKUaBVLvWgWR0C6bnbuUliSdX2UKGgGaAloD0MIB7MJMKyyckCUhpRSlGgVS9loFkdAum56SdOIqXV9lChoBmgJaA9DCJq0qbpHPXFAlIaUUpRoFUuZaBZHQLpukYp2ECh1fZQoaAZoCWgPQwigG5qyU8hvQJSGlFKUaBVLsmgWR0C6bq3ta6jGdX2UKGgGaAloD0MIB7EzhQ6KcUCUhpRSlGgVS69oFkdAum68C9ytFXV9lChoBmgJaA9DCI7KTdTShHFAlIaUUpRoFUu7aBZHQLpuvKAavRt1fZQoaAZoCWgPQwhtWFNZFIlwQJSGlFKUaBVLxmgWR0C6btmQr+YMdX2UKGgGaAloD0MIi/z6IXYEcUCUhpRSlGgVS7xoFkdAum7ej3225XV9lChoBmgJaA9DCHAnEeGfAHFAlIaUUpRoFUuSaBZHQLpvGRywOe91fZQoaAZoCWgPQwhUyJV6FkdwQJSGlFKUaBVLsWgWR0C6b0TMRpUQdX2UKGgGaAloD0MIpdqn4zGPcUCUhpRSlGgVS7VoFkdAum9ursByS3V9lChoBmgJaA9DCMKht3g4vnBAlIaUUpRoFUudaBZHQLpvnj9GZu11fZQoaAZoCWgPQwhtH/KWK7ZuQJSGlFKUaBVLr2gWR0C6b6CRB/qgdX2UKGgGaAloD0MI5Euo4DB5cECUhpRSlGgVS7ZoFkdAum+uMvRJE3V9lChoBmgJaA9DCD+Ne/Pb2XBAlIaUUpRoFUu1aBZHQLpvyvR7Z391fZQoaAZoCWgPQwhPBdzz/DJyQJSGlFKUaBVLq2gWR0C6b96Bd2PldX2UKGgGaAloD0MIrvVFQttwckCUhpRSlGgVS71oFkdAum/mEOAiFHV9lChoBmgJaA9DCCHM7V5uGnBAlIaUUpRoFUvPaBZHQLpv+fXf6451fZQoaAZoCWgPQwhLOV/svdhuQJSGlFKUaBVLrWgWR0C6b/9sN2C/dX2UKGgGaAloD0MIaHVyhqIwckCUhpRSlGgVS6xoFkdAunAq3y7PIHV9lChoBmgJaA9DCGpQNA/g5XFAlIaUUpRoFUvBaBZHQLpwMdNFjNJ1fZQoaAZoCWgPQwgqdF5jl9VvQJSGlFKUaBVLv2gWR0C6cFQrtmcwdX2UKGgGaAloD0MI2su20xbOckCUhpRSlGgVS+doFkdAunB6814xDnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 470,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Lunarlander-PPO1M/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b83b543383df37cc8e1364156fb6537f850ef26f16b41c5068aa21d20c5f9c27
3
+ size 84893
Lunarlander-PPO1M/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c1fb2244f38b3ebb81646364009c91ae0fb44fe8be78f6bb12ff79ba6999ec8
3
+ size 43201
Lunarlander-PPO1M/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Lunarlander-PPO1M/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO1M
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 278.20 +/- 15.91
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO1M** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO1M** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83cf37e200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83cf37e290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83cf37e320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83cf37e3b0>", "_build": "<function ActorCriticPolicy._build at 0x7f83cf37e440>", "forward": "<function ActorCriticPolicy.forward at 0x7f83cf37e4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83cf37e560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83cf37e5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83cf37e680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83cf37e710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83cf37e7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83cf3ce300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651908975.6397204, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0AIz6Oj4a8ikt5OxKQH7oKxe69eI75ugAAAAAAAIA/zZwhva539roUmZk8ZTf4O50YFbxr0eI8AACAPwAAgD/aRbs96jpPPu0gqb5gg/e+S3D4vYd6l70AAAAAAAAAAEaePb6Our89p6iLPvmTrL7oSzE8K9nWPAAAAAAAAAAAs1pJPZLzrj+3kSw/OnW4vpdOorxp2Is9AAAAAAAAAABzF6C+SzzhPuASYD4sxuK+CuUmvhwVOT4AAAAAAAAAACasmL2uR6u2stqZM7pB/S7jzO05bKutswAAgD8AAIA/M2dNPPY8NrqDqkk9oVbjsg7qkbvZdsUwAACAPwAAgD+zI9M9WuJeP+2PFz2ABSq/PtBmPouBub0AAAAAAAAAAM1GQrxH9Cs+ce+gu4cL3r64Bx691PcMPAAAAAAAAAAAuqJWPpfbAT9W5Ey+B4vrvr8+tj123H29AAAAAAAAAADu35i+75RcP96sEr5ebRu/TDuovp7rTj0AAAAAAAAAABpcUD1NGdE+Q9/evbMTGb+oqi894KVgvQAAAAAAAAAAZsoUPaMMoD+iVQA+QM8bvwotNT11TK09AAAAAAAAAADm/WU9Z04VPmYQEr0mPNG+vaGkPB7D9rwAAAAAAAAAAA27TT5P74I/5MSFPmZsC78OQrA+fKoqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIukxNgncRckCUhpRSlIwBbJRL1owBdJRHQLpmbyZa3Zx1fZQoaAZoCWgPQwjrOlRT0utxQJSGlFKUaBVLj2gWR0C6ZnzLjghsdX2UKGgGaAloD0MIuLHZkSoOc0CUhpRSlGgVS9BoFkdAumaeP1ct5HV9lChoBmgJaA9DCPUtc7osa3JAlIaUUpRoFUvEaBZHQLpmzcNpdrx1fZQoaAZoCWgPQwisb2By4zJyQJSGlFKUaBVLxGgWR0C6Zs/VmSQpdX2UKGgGaAloD0MInWUWoZjocUCUhpRSlGgVS7toFkdAumcN84Pwu3V9lChoBmgJaA9DCCum0k/48HBAlIaUUpRoFUu+aBZHQLpnIm7J4jd1fZQoaAZoCWgPQwi4dw360oNyQJSGlFKUaBVLpmgWR0C6ZyQGSpzcdX2UKGgGaAloD0MI7Es2HuySbkCUhpRSlGgVS6JoFkdAumdBisny/nV9lChoBmgJaA9DCLVRnQ7kUG9AlIaUUpRoFUuyaBZHQLpntuiN83N1fZQoaAZoCWgPQwjoFORnY2twQJSGlFKUaBVL7GgWR0C6Z7uk+HJtdX2UKGgGaAloD0MI8E4+PXZpc0CUhpRSlGgVS89oFkdAumfPbdrO7nV9lChoBmgJaA9DCKOSOgEN13FAlIaUUpRoFUu6aBZHQLpn3stCiRJ1fZQoaAZoCWgPQwhWvJF5ZPdwQJSGlFKUaBVLz2gWR0C6Z+0tyxRmdX2UKGgGaAloD0MIJVryeNpHcECUhpRSlGgVS7VoFkdAumfv7vXsgXV9lChoBmgJaA9DCDIfEOiMVnJAlIaUUpRoFUulaBZHQLpn9xnnMdN1fZQoaAZoCWgPQwgpkq8EEslyQJSGlFKUaBVL22gWR0C6aDBO58SgdX2UKGgGaAloD0MIcXUAxJ0UcUCUhpRSlGgVS8hoFkdAumh1TsIE83V9lChoBmgJaA9DCFZFuMmok2FAlIaUUpRoFU3oA2gWR0C6aIfNmlImdX2UKGgGaAloD0MIVRSvsvY/ckCUhpRSlGgVS9toFkdAumijEaVD8nV9lChoBmgJaA9DCJ/HKM+8Z3BAlIaUUpRoFUu5aBZHQLpotj7Q9id1fZQoaAZoCWgPQwh6UiY1tGBvQJSGlFKUaBVLu2gWR0C6aLlschkidX2UKGgGaAloD0MI4/4j02HvcECUhpRSlGgVS79oFkdAumjfiHZbp3V9lChoBmgJaA9DCNlbyvniuHFAlIaUUpRoFUvmaBZHQLpo+JVsDW91fZQoaAZoCWgPQwh1q+ekN35xQJSGlFKUaBVLmWgWR0C6aSkDIRywdX2UKGgGaAloD0MIm6xRD9FJb0CUhpRSlGgVS6hoFkdAumk5YGMXJ3V9lChoBmgJaA9DCOC7zRvnjnBAlIaUUpRoFUu5aBZHQLppPEehf0F1fZQoaAZoCWgPQwh2+daHdexwQJSGlFKUaBVLwmgWR0C6aUnnhbW3dX2UKGgGaAloD0MImUnUC368cUCUhpRSlGgVS6doFkdAumlNBa9sanV9lChoBmgJaA9DCBpR2ht8h3FAlIaUUpRoFUvLaBZHQLppinwXqJN1fZQoaAZoCWgPQwj+LJYiuSxyQJSGlFKUaBVL2WgWR0C6aYnAqNIcdX2UKGgGaAloD0MIoMIRpBIjckCUhpRSlGgVS5xoFkdAummoeKbay3V9lChoBmgJaA9DCBno2heQcnFAlIaUUpRoFUugaBZHQLpp7K4x1xN1fZQoaAZoCWgPQwiFIt3PKaNyQJSGlFKUaBVL5WgWR0C6afxxo7FLdX2UKGgGaAloD0MICYfe4uHfckCUhpRSlGgVS75oFkdAumn8AR02cnV9lChoBmgJaA9DCAYsuYpFEHBAlIaUUpRoFUuuaBZHQLpqCDbrTph1fZQoaAZoCWgPQwgX83NDU4lzQJSGlFKUaBVLyGgWR0C6airMLWqcdX2UKGgGaAloD0MIAb9GkiD/cUCUhpRSlGgVS8BoFkdAumpZx82Ji3V9lChoBmgJaA9DCGa/7nTnsnBAlIaUUpRoFUujaBZHQLpqkBUaQ3h1fZQoaAZoCWgPQwgw8x38RIlxQJSGlFKUaBVL0mgWR0C6apoNiH6/dX2UKGgGaAloD0MI+P9xwkTIcECUhpRSlGgVS6poFkdAumqiYXwb2nV9lChoBmgJaA9DCKUUdHsJT3NAlIaUUpRoFUu4aBZHQLpqq0qH4491fZQoaAZoCWgPQwi5wyYys3JwQJSGlFKUaBVLu2gWR0C6arOirT6SdX2UKGgGaAloD0MIWtb9Y6EZckCUhpRSlGgVS9xoFkdAumrd68g6l3V9lChoBmgJaA9DCIviVda2bnJAlIaUUpRoFUvJaBZHQLprGzT4L1F1fZQoaAZoCWgPQwggls0cEkBxQJSGlFKUaBVLz2gWR0C6a0m3jMmndX2UKGgGaAloD0MIOdbFbfT6cUCUhpRSlGgVS8FoFkdAumt1E0BOpXV9lChoBmgJaA9DCCnLEMe6n3FAlIaUUpRoFUu/aBZHQLprf2gFotd1fZQoaAZoCWgPQwjjbaXXJrJyQJSGlFKUaBVLyGgWR0C6a5VENOM3dX2UKGgGaAloD0MI97GC38YxcUCUhpRSlGgVS85oFkdAumutfw7T2HV9lChoBmgJaA9DCJ4I4jxcYnFAlIaUUpRoFUu5aBZHQLpr0nSfDk51fZQoaAZoCWgPQwgJMgIqnGBzQJSGlFKUaBVL4mgWR0C6a/4YaYNRdX2UKGgGaAloD0MImGw82GISc0CUhpRSlGgVS61oFkdAumwHmW+oL3V9lChoBmgJaA9DCPcGX5gMgnFAlIaUUpRoFUvBaBZHQLpsIK8+Ro11fZQoaAZoCWgPQwh8Yp0qX9VwQJSGlFKUaBVLvmgWR0C6bCShvitJdX2UKGgGaAloD0MIPIidKTSycUCUhpRSlGgVS8hoFkdAumxVMK1G9nV9lChoBmgJaA9DCHIVi9/UGHRAlIaUUpRoFUvGaBZHQLpsgQwK0D51fZQoaAZoCWgPQwg5Kcx7nMpyQJSGlFKUaBVLsWgWR0C6bJnJDE3sdX2UKGgGaAloD0MInUZaKu/Gc0CUhpRSlGgVS/1oFkdAumy7mlqJuXV9lChoBmgJaA9DCPT4vU1/2G9AlIaUUpRoFUueaBZHQLps0zsyBTZ1fZQoaAZoCWgPQwiHakqyjhdyQJSGlFKUaBVLxmgWR0C6bPDHsC1adX2UKGgGaAloD0MIfhmMEUmtcUCUhpRSlGgVS5toFkdAumz34FiazHV9lChoBmgJaA9DCE3WqIfoXHJAlIaUUpRoFUu9aBZHQLptCFR51Nh1fZQoaAZoCWgPQwjr/rEQnThvQJSGlFKUaBVLs2gWR0C6bRBCMPz4dX2UKGgGaAloD0MIgGCOHj9yckCUhpRSlGgVS6doFkdAum1V+EytWHV9lChoBmgJaA9DCP8EFyvqPmdAlIaUUpRoFU3oA2gWR0C6bViAMDwIdX2UKGgGaAloD0MI01CjkGQ5b0CUhpRSlGgVS6loFkdAum1ih24d63V9lChoBmgJaA9DCLJiuDoAt3JAlIaUUpRoFUvFaBZHQLpta7qptJp1fZQoaAZoCWgPQwgEcLN4MTJyQJSGlFKUaBVLo2gWR0C6bWvXkHUudX2UKGgGaAloD0MIM6SK4hV3cUCUhpRSlGgVS6loFkdAum14YixFAnV9lChoBmgJaA9DCHQIHAk0GXNAlIaUUpRoFUu1aBZHQLpt9xfOUt91fZQoaAZoCWgPQwhWuyaktbBxQJSGlFKUaBVL3WgWR0C6bgiH2ys0dX2UKGgGaAloD0MIWaSJd0ATckCUhpRSlGgVS9FoFkdAum4a1iONpHV9lChoBmgJaA9DCAtjC0EOvXJAlIaUUpRoFUvRaBZHQLpuUcvduYR1fZQoaAZoCWgPQwjwFHKlngNvQJSGlFKUaBVLqGgWR0C6blVQQ+UydX2UKGgGaAloD0MIMuauJaSycUCUhpRSlGgVS8JoFkdAum5qPbO/tnV9lChoBmgJaA9DCIS3ByEggHNAlIaUUpRoFUvCaBZHQLpucHiWE9N1fZQoaAZoCWgPQwjG4cyvJu5wQJSGlFKUaBVLvWgWR0C6bnbuUliSdX2UKGgGaAloD0MIB7MJMKyyckCUhpRSlGgVS9loFkdAum56SdOIqXV9lChoBmgJaA9DCJq0qbpHPXFAlIaUUpRoFUuZaBZHQLpukYp2ECh1fZQoaAZoCWgPQwigG5qyU8hvQJSGlFKUaBVLsmgWR0C6bq3ta6jGdX2UKGgGaAloD0MIB7EzhQ6KcUCUhpRSlGgVS69oFkdAum68C9ytFXV9lChoBmgJaA9DCI7KTdTShHFAlIaUUpRoFUu7aBZHQLpuvKAavRt1fZQoaAZoCWgPQwhtWFNZFIlwQJSGlFKUaBVLxmgWR0C6btmQr+YMdX2UKGgGaAloD0MIi/z6IXYEcUCUhpRSlGgVS7xoFkdAum7ej3225XV9lChoBmgJaA9DCHAnEeGfAHFAlIaUUpRoFUuSaBZHQLpvGRywOe91fZQoaAZoCWgPQwhUyJV6FkdwQJSGlFKUaBVLsWgWR0C6b0TMRpUQdX2UKGgGaAloD0MIpdqn4zGPcUCUhpRSlGgVS7VoFkdAum9ursByS3V9lChoBmgJaA9DCMKht3g4vnBAlIaUUpRoFUudaBZHQLpvnj9GZu11fZQoaAZoCWgPQwhtH/KWK7ZuQJSGlFKUaBVLr2gWR0C6b6CRB/qgdX2UKGgGaAloD0MI5Euo4DB5cECUhpRSlGgVS7ZoFkdAum+uMvRJE3V9lChoBmgJaA9DCD+Ne/Pb2XBAlIaUUpRoFUu1aBZHQLpvyvR7Z391fZQoaAZoCWgPQwhPBdzz/DJyQJSGlFKUaBVLq2gWR0C6b96Bd2PldX2UKGgGaAloD0MIrvVFQttwckCUhpRSlGgVS71oFkdAum/mEOAiFHV9lChoBmgJaA9DCCHM7V5uGnBAlIaUUpRoFUvPaBZHQLpv+fXf6451fZQoaAZoCWgPQwhLOV/svdhuQJSGlFKUaBVLrWgWR0C6b/9sN2C/dX2UKGgGaAloD0MIaHVyhqIwckCUhpRSlGgVS6xoFkdAunAq3y7PIHV9lChoBmgJaA9DCGpQNA/g5XFAlIaUUpRoFUvBaBZHQLpwMdNFjNJ1fZQoaAZoCWgPQwgqdF5jl9VvQJSGlFKUaBVLv2gWR0C6cFQrtmcwdX2UKGgGaAloD0MI2su20xbOckCUhpRSlGgVS+doFkdAunB6814xDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 470, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20334c1ede94e5770cf3c2bda1f49a0338e0e511deed0799e3a5d93fe47ef3c3
3
+ size 218158
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 278.1959627446023, "std_reward": 15.910259268164374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T08:03:47.472484"}