BabyLangModel / model.py
Exquisique's picture
"test"
f8f40b7
raw
history blame
7.02 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
class GPTConfig(PretrainedConfig):
model_type = "babylang"
def __init__(
self,
vocab_size=50257,
block_size=128,
n_layer=6,
n_head=6,
n_embd=384,
dropout=0.0,
bias=True,
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.block_size = block_size
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
self.dropout = dropout
self.bias = bias
class LayerNorm(nn.Module):
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, x):
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.flash = hasattr(F, 'scaled_dot_product_attention')
if not self.flash:
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x, layer_past=None):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat((past_key, k), dim=-2)
v = torch.cat((past_value, v), dim=-2)
present = (k, v)
if self.flash:
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y, present
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = LayerNorm(config.n_embd, config.bias)
self.attn = CausalSelfAttention(config)
self.ln2 = LayerNorm(config.n_embd, config.bias)
self.mlp = MLP(config)
def forward(self, x, layer_past=None):
x = x + self.attn(self.ln1(x), layer_past=layer_past)
x = x + self.mlp(self.ln2(x))
return x
class GPT(PreTrainedModel):
config_class = GPTConfig
base_model_prefix = "babylang"
def __init__(self, config):
super().__init__(config)
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=LayerNorm(config.n_embd, config.bias),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, input_ids, past_key_values=None, attention_mask=None, labels=None):
device = input_ids.device
b, t = input_ids.size()
assert t <= self.config.block_size
pos = torch.arange(0, t, dtype=torch.long, device=device)
if past_key_values is not None:
pos = pos[-1].unsqueeze(0)
tok_emb = self.transformer.wte(input_ids)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
new_past_key_values = []
for i, block in enumerate(self.transformer.h):
x, past = block(x, layer_past=past_key_values[i] if past_key_values is not None else None)
new_past_key_values.append(past)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=new_past_key_values)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
return {"input_ids": input_ids, "past_key_values": past_key_values}
@torch.no_grad()
def generate(self, input_ids, max_new_tokens, temperature=1.0, top_k=None):
for _ in range(max_new_tokens):
idx_cond = input_ids if input_ids.size(1) <= self.config.block_size else input_ids[:, -self.config.block_size:]
out = self(idx_cond)
logits = out['logits'][:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
input_ids = torch.cat((input_ids, idx_next), dim=1)
return input_ids