Commit
·
d2544e1
1
Parent(s):
23516c0
Make GPT inherit from PreTrainedModel for HF compatibility
Browse files
README.md
CHANGED
@@ -13,7 +13,6 @@ library_name: transformers
|
|
13 |
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
-
# 🍼 BabyLangModel
|
17 |
|
18 |
# 🍼 BabyLangModel
|
19 |
|
|
|
13 |
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
|
|
16 |
|
17 |
# 🍼 BabyLangModel
|
18 |
|
model.py
CHANGED
@@ -2,6 +2,30 @@ import torch
|
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class LayerNorm(nn.Module):
|
7 |
def __init__(self, ndim, bias):
|
@@ -70,10 +94,11 @@ class Block(nn.Module):
|
|
70 |
x = x + self.mlp(self.ln2(x))
|
71 |
return x
|
72 |
|
73 |
-
class GPT(
|
|
|
|
|
74 |
def __init__(self, config):
|
75 |
-
super().__init__()
|
76 |
-
self.config = config
|
77 |
self.transformer = nn.ModuleDict(dict(
|
78 |
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
79 |
wpe=nn.Embedding(config.block_size, config.n_embd),
|
@@ -97,37 +122,37 @@ class GPT(nn.Module):
|
|
97 |
elif isinstance(module, nn.Embedding):
|
98 |
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
99 |
|
100 |
-
def forward(self,
|
101 |
-
device =
|
102 |
-
b, t =
|
103 |
assert t <= self.config.block_size
|
104 |
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
105 |
|
106 |
-
tok_emb = self.transformer.wte(
|
107 |
pos_emb = self.transformer.wpe(pos)
|
108 |
x = self.transformer.drop(tok_emb + pos_emb)
|
109 |
for block in self.transformer.h:
|
110 |
x = block(x)
|
111 |
x = self.transformer.ln_f(x)
|
112 |
|
113 |
-
if
|
114 |
logits = self.lm_head(x)
|
115 |
-
loss = F.cross_entropy(logits.view(-1, logits.size(-1)),
|
116 |
-
return logits, loss
|
117 |
else:
|
118 |
logits = self.lm_head(x[:, [-1], :])
|
119 |
-
return logits
|
120 |
|
121 |
@torch.no_grad()
|
122 |
-
def generate(self,
|
123 |
for _ in range(max_new_tokens):
|
124 |
-
idx_cond =
|
125 |
-
|
126 |
-
logits = logits[:, -1, :] / temperature
|
127 |
if top_k is not None:
|
128 |
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
129 |
logits[logits < v[:, [-1]]] = -float('Inf')
|
130 |
probs = F.softmax(logits, dim=-1)
|
131 |
idx_next = torch.multinomial(probs, num_samples=1)
|
132 |
-
|
133 |
-
return
|
|
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
import math
|
5 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
6 |
+
|
7 |
+
class GPTConfig(PretrainedConfig):
|
8 |
+
model_type = "gpt"
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
vocab_size=50257,
|
13 |
+
block_size=128,
|
14 |
+
n_layer=6,
|
15 |
+
n_head=6,
|
16 |
+
n_embd=384,
|
17 |
+
dropout=0.0,
|
18 |
+
bias=True,
|
19 |
+
**kwargs
|
20 |
+
):
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
self.vocab_size = vocab_size
|
23 |
+
self.block_size = block_size
|
24 |
+
self.n_layer = n_layer
|
25 |
+
self.n_head = n_head
|
26 |
+
self.n_embd = n_embd
|
27 |
+
self.dropout = dropout
|
28 |
+
self.bias = bias
|
29 |
|
30 |
class LayerNorm(nn.Module):
|
31 |
def __init__(self, ndim, bias):
|
|
|
94 |
x = x + self.mlp(self.ln2(x))
|
95 |
return x
|
96 |
|
97 |
+
class GPT(PreTrainedModel):
|
98 |
+
config_class = GPTConfig
|
99 |
+
|
100 |
def __init__(self, config):
|
101 |
+
super().__init__(config)
|
|
|
102 |
self.transformer = nn.ModuleDict(dict(
|
103 |
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
104 |
wpe=nn.Embedding(config.block_size, config.n_embd),
|
|
|
122 |
elif isinstance(module, nn.Embedding):
|
123 |
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
124 |
|
125 |
+
def forward(self, input_ids, labels=None):
|
126 |
+
device = input_ids.device
|
127 |
+
b, t = input_ids.size()
|
128 |
assert t <= self.config.block_size
|
129 |
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
130 |
|
131 |
+
tok_emb = self.transformer.wte(input_ids)
|
132 |
pos_emb = self.transformer.wpe(pos)
|
133 |
x = self.transformer.drop(tok_emb + pos_emb)
|
134 |
for block in self.transformer.h:
|
135 |
x = block(x)
|
136 |
x = self.transformer.ln_f(x)
|
137 |
|
138 |
+
if labels is not None:
|
139 |
logits = self.lm_head(x)
|
140 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)
|
141 |
+
return {'logits': logits, 'loss': loss}
|
142 |
else:
|
143 |
logits = self.lm_head(x[:, [-1], :])
|
144 |
+
return {'logits': logits}
|
145 |
|
146 |
@torch.no_grad()
|
147 |
+
def generate(self, input_ids, max_new_tokens, temperature=1.0, top_k=None):
|
148 |
for _ in range(max_new_tokens):
|
149 |
+
idx_cond = input_ids if input_ids.size(1) <= self.config.block_size else input_ids[:, -self.config.block_size:]
|
150 |
+
out = self(idx_cond)
|
151 |
+
logits = out['logits'][:, -1, :] / temperature
|
152 |
if top_k is not None:
|
153 |
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
154 |
logits[logits < v[:, [-1]]] = -float('Inf')
|
155 |
probs = F.softmax(logits, dim=-1)
|
156 |
idx_next = torch.multinomial(probs, num_samples=1)
|
157 |
+
input_ids = torch.cat((input_ids, idx_next), dim=1)
|
158 |
+
return input_ids
|