File size: 2,463 Bytes
e56b1f2 68c8760 e56b1f2 68c8760 e56b1f2 68c8760 e56b1f2 68c8760 e56b1f2 68c8760 e56b1f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- common_voice_13_0
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: XLS-R-demo-google-colab-Ezra_William_Prod_1
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: id
split: validation
args: id
metrics:
- type: wer
value: 0.5410194506445588
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-demo-google-colab-Ezra_William_Prod_1
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6266
- Wer: 0.5410
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.5357 | 1.0 | 121 | 2.9681 | 1.0 |
| 2.9324 | 2.0 | 242 | 2.8618 | 1.0 |
| 2.8708 | 3.0 | 363 | 2.4604 | 1.0 |
| 2.4605 | 4.0 | 484 | 0.8385 | 0.7171 |
| 0.5712 | 5.0 | 605 | 0.6917 | 0.6913 |
| 0.4235 | 6.0 | 726 | 0.6216 | 0.6121 |
| 0.3508 | 7.0 | 847 | 0.5942 | 0.5765 |
| 0.2953 | 8.0 | 968 | 0.6049 | 0.5710 |
| 0.2543 | 9.0 | 1089 | 0.6319 | 0.5605 |
| 0.1985 | 10.0 | 1210 | 0.6327 | 0.5544 |
| 0.1819 | 11.0 | 1331 | 0.6229 | 0.5412 |
| 0.1745 | 12.0 | 1452 | 0.6266 | 0.5410 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|