Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1955.03 +/- 61.01
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e3f1bdf1f3fdadf8ef181ab5acb8d4ea288b56780501f33a65220425b3bf430
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fcd8581f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fcd858280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fcd858310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fcd8583a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3fcd858430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3fcd8584c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3fcd858550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fcd8585e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3fcd858670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fcd858700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fcd858790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fcd858820>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f3fcd84eea0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674302305421037834,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANpemL8Qvpa/MrdAPVfmGz8OT9C/ZFR4P9gIR74YitK8tRMGP8lpAr5+PfS+pspTPUwUrL9VIwA80zjtPkX1Jb/PYSi/9Emrv0q/Rj8cKUC+5QWdvtaCib+tTJG/W3pfO1aNhT8kDRY/mfAOP2TNfL/I0ZU/w4jevb8EBT9ZCLO/8YPOvs5P5cAkg+a+5LibP0ucAT/mb9G9v3UXv73cZD+AEsG/iG40O3eHYz/zo7K8VnsEPwoLnL8ow5O/6op5wCgCjT7861a/0zKvv0ePiryAW3W/62Dav0k+5b9kzXy/G8yMv1ELp7/nX6K9WWXtPjod3L43waM+wDuvvr/0L77/UwI/QYj7vMdr/r7ViD4+fwuCv+KDQD8B9Ck/4YfBPoDemL4P62G8T2wjPz4uFT8gHSI90aR0vjV/T7+cf5s/Vo2FPyQNFj+Z8A4/ZM18vzouuL/F85W/J/xXPWhfDj5/CTi+BLMAPwi76LxwS+U+kSvuPoa+IEAugiS/yzAiP+UCs796SX8+14VVPwJOB79Tuh09ZrXkvVAQAT8qKYU/bBecvk1guz/REpG/ZpsvvlaNhT/rYNq/mfAOP2TNfL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD3Bau2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARvCzPQAAAACzY/y/AAAAAJ8j0r0AAAAAQSD0PwAAAADE5549AAAAAJ/r2z8AAAAAYN3ZPQAAAADTNO2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg/M2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEyErz0AAAAAKjP5vwAAAABiD2g9AAAAAMs+3D8AAAAAS95zPQAAAABZJvY/AAAAAPJUsb0AAAAA5ePcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG6BULcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA08RA+AAAAAOco2r8AAAAAgtIAvgAAAACuC+8/AAAAAIagC74AAAAA/ej6PwAAAAC14AY+AAAAAIGo4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABO1II2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAl4utvAAAAADcN+W/AAAAAHFk9z0AAAAAmwrsPwAAAACXngg+AAAAAK6X/T8AAAAAiQvOPQAAAADfXADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKDLBSWJJoWMAWyUTegDjAF0lEdAqDJdTvRZ2nV9lChoBkdAoEKs8A7xNWgHTegDaAhHQKg47CFbmlt1fZQoaAZHQJulH7Kq4pdoB03oA2gIR0CoOjklVtGedX2UKGgGR0CY06tG/etTaAdN6ANoCEdAqD56n752yXV9lChoBkdAm1ZrBKtga2gHTegDaAhHQKg+zFGXokl1fZQoaAZHQJrQLxQSBbxoB03oA2gIR0CoRSoQOFxodX2UKGgGR0Cd7bcgQpWnaAdN6ANoCEdAqEZsQyylenV9lChoBkdAn1X4f0VafWgHTegDaAhHQKhKrGo73f11fZQoaAZHQJgYSdFvybxoB03oA2gIR0CoSvoFNcnmdX2UKGgGR0ChMJN5+pfhaAdN6ANoCEdAqFFFvwVj7XV9lChoBkdAn1rTyOJcgWgHTegDaAhHQKhSpB2OhkB1fZQoaAZHQJ3583o9s8BoB03oA2gIR0CoVu668QI2dX2UKGgGR0CdMHLZBcAzaAdN6ANoCEdAqFc8QEpy63V9lChoBkdAmxy0o0ALiWgHTegDaAhHQKhdnoEjgQ91fZQoaAZHQJlxXcO9WZJoB03oA2gIR0CoXu49X9zfdX2UKGgGR0Ce1sNKAavSaAdN6ANoCEdAqGM8FY+0PnV9lChoBkdAm/PM8TzunmgHTegDaAhHQKhjiuSwGGF1fZQoaAZHQJ7xXBciW3VoB03oA2gIR0CoaiG3F1jidX2UKGgGR0CbXpCe2/i6aAdN6ANoCEdAqGtq1NQCS3V9lChoBkdAnjwHxBmf5GgHTegDaAhHQKhv2pyZKFt1fZQoaAZHQJslWqYJE6VoB03oA2gIR0CocDMJIDoydX2UKGgGR0CdtAcVxjriaAdN6ANoCEdAqHad/OMVDnV9lChoBkdAmsiCiyprDmgHTegDaAhHQKh38Z2pyZN1fZQoaAZHQJJWNTGYKIBoB03oA2gIR0CofHxmK64EdX2UKGgGR0CSEvGOuJUHaAdN6ANoCEdAqHzPek56t3V9lChoBkdAmWn04vN/v2gHTegDaAhHQKiDSAf+0gN1fZQoaAZHQJTOQ/6frbBoB03oA2gIR0CohKLylN1ydX2UKGgGR0CcgSa7VawEaAdN6ANoCEdAqItKt1ZDA3V9lChoBkdAoCEk/lhgE2gHTegDaAhHQKiL2de6Zpl1fZQoaAZHQJKPdn3+MqBoB03oA2gIR0Cok9ca4tpVdX2UKGgGR0CdgVOMVDa5aAdN6ANoCEdAqJU3wiJO33V9lChoBkdAmUHX27FsHmgHTegDaAhHQKiZopOvdM11fZQoaAZHQKC1YcMEzO5oB03oA2gIR0ComfKDTSb6dX2UKGgGR0CfKZF4s3AEaAdN6ANoCEdAqKAq2MKkVXV9lChoBkdAn/IHcHnln2gHTegDaAhHQKihddE9dNZ1fZQoaAZHQJlrdTS9du5oB03oA2gIR0Copar5IpYtdX2UKGgGR0CcqLklNUOvaAdN6ANoCEdAqKX/b9If83V9lChoBkdAnkEYLb5/LGgHTegDaAhHQKiskQOFxn51fZQoaAZHQJ3xfkIX0oVoB03oA2gIR0CoreQS8J2MdX2UKGgGR0CfCs2hIvrXaAdN6ANoCEdAqLIxZ4fOlnV9lChoBkdAmoZbVawD/2gHTegDaAhHQKiygQQtjCp1fZQoaAZHQKAn6F49ovloB03oA2gIR0CouN6QNkOJdX2UKGgGR0CZpXQ8fV7QaAdN6ANoCEdAqLouTLW7OHV9lChoBkdAmuyhyfcvd2gHTegDaAhHQKi+cSB9Tgl1fZQoaAZHQKFj2zUI9kloB03oA2gIR0CovsBIFvAHdX2UKGgGR0CgjrhE0BOpaAdN6ANoCEdAqMVUQkHD8HV9lChoBkdAmF5KZ2IO6WgHTegDaAhHQKjGpKfWcz91fZQoaAZHQKAcQPeYUnJoB03oA2gIR0CoyvNnPE88dX2UKGgGR0CeyVMHbAUMaAdN6ANoCEdAqMtM4m1IAnV9lChoBkdAnubW3OObRWgHTegDaAhHQKjRt7FbVz91fZQoaAZHQJ7+YNkOI69oB03oA2gIR0Co0wiI+GGmdX2UKGgGR0CfUEBbwBo3aAdN6ANoCEdAqNdPyup0fnV9lChoBkdAoD3SAe7tiWgHTegDaAhHQKjXo3BHkLh1fZQoaAZHQKA4GeCCjDdoB03oA2gIR0Co3lsuez2OdX2UKGgGR0Cg842hIvrXaAdN6ANoCEdAqN+yVGCqZXV9lChoBkdAoIEAxcmjTWgHTegDaAhHQKjj7s3yZrp1fZQoaAZHQJ9RcGxD9floB03oA2gIR0Co5DyEUTL4dX2UKGgGR0CcdZn8sMAnaAdN6ANoCEdAqOr4mmce83V9lChoBkdAjaXjCYTkAGgHTegDaAhHQKjsXVtoBaN1fZQoaAZHQKBIUiV0Lc9oB03oA2gIR0Co8Jxjz7MxdX2UKGgGR0Cc58OaOPvKaAdN6ANoCEdAqPDz5mAbynV9lChoBkdAoRzKzZ6D5GgHTegDaAhHQKj3kc6Nly11fZQoaAZHQKAtIBe5WiloB03oA2gIR0Co+N48lolEdX2UKGgGR0CbYa925hBraAdN6ANoCEdAqP0tthuwYHV9lChoBkdAnzO4MWoFV2gHTegDaAhHQKj9eq//Nqx1fZQoaAZHQJ5ljdGiHqNoB03oA2gIR0CpA+3rdFfBdX2UKGgGR0CgCX/336AOaAdN6ANoCEdAqQU3Pqs2enV9lChoBkdAn6UxuGbkO2gHTegDaAhHQKkJrKGtZFJ1fZQoaAZHQKAnz9ZzPrxoB03oA2gIR0CpCgquKXOXdX2UKGgGR0CgOd7NbC79aAdN6ANoCEdAqRBzHAAQx3V9lChoBkdAoRO8IRh+fGgHTegDaAhHQKkRumfoRqZ1fZQoaAZHQKGxvEnb7CVoB03oA2gIR0CpFf4iosI3dX2UKGgGR0Cehwlj3EhraAdN6ANoCEdAqRZK3I+4b3V9lChoBkdAoba7cIqsl2gHTegDaAhHQKkcpqrR0EJ1fZQoaAZHQKCltSjQAuJoB03oA2gIR0CpHgzGPxQSdX2UKGgGR0Cf6dgKF7D3aAdN6ANoCEdAqSKvCGetjnV9lChoBkdAnOxAgTyrgmgHTegDaAhHQKkjAEoOQQt1fZQoaAZHQJtAMLy+YdBoB03oA2gIR0CpKZzKT0QLdX2UKGgGR0CeQ+FpPAO8aAdN6ANoCEdAqSr/VZs9CHV9lChoBkdAoH5SA6Mir2gHTegDaAhHQKkvYYVqN6x1fZQoaAZHQJj8wzWPLgZoB03oA2gIR0CpL7LU1AJLdX2UKGgGR0Cg/vE7nxJ/aAdN6ANoCEdAqTY3EZR8+nV9lChoBkdAoWK0DuBtlGgHTegDaAhHQKk3qE+xGDt1fZQoaAZHQKDW0IRh+fBoB03oA2gIR0CpO/XdTHbRdX2UKGgGR0CgxHiQcPvsaAdN6ANoCEdAqTxQht+CsnV9lChoBkdAkQ3xBu4wy2gHTegDaAhHQKlC7EbYK6Z1fZQoaAZHQKAx11jiGWVoB03oA2gIR0CpRDpM6BAfdX2UKGgGR0CeETykKu0UaAdN6ANoCEdAqUielqJuVHV9lChoBkdAnllHNorWiGgHTegDaAhHQKlI7o8IRiB1fZQoaAZHQJ33ax6fJ3hoB03oA2gIR0CpT4b83uNQdX2UKGgGR0CcFVFw1ivxaAdN6ANoCEdAqVDncN6PbXV9lChoBkdAnEv2ilBQemgHTegDaAhHQKlVPpudf9h1fZQoaAZHQJto9Li++M9oB03oA2gIR0CpVY5zHS4OdX2UKGgGR0CgFUoSlFc6aAdN6ANoCEdAqVwa/fwZwXV9lChoBkdAoBVxL26ClWgHTegDaAhHQKlddYbsF+x1fZQoaAZHQJ+nXp2U0N1oB03oA2gIR0CpYfJ8WsRydX2UKGgGR0Cfg5EKVpsXaAdN6ANoCEdAqWJID5j6N3V9lChoBkdAmgRf6oESumgHTegDaAhHQKlpExfOUt91fZQoaAZHQJfvSlO45LhoB03oA2gIR0CpamOiFj/ddX2UKGgGR0CZwNM8HObBaAdN6ANoCEdAqW6m6unuRnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7d1bf113f71e287ad3b9b5317affb48f6a018dd25e8ca61edaf34acb9c5c2cb
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f80637b40533554964256815b8e951b5767050ea69d359773a14651b0b1b3926
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fcd8581f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fcd858280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fcd858310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fcd8583a0>", "_build": "<function ActorCriticPolicy._build at 0x7f3fcd858430>", "forward": "<function ActorCriticPolicy.forward at 0x7f3fcd8584c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3fcd858550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fcd8585e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3fcd858670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fcd858700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fcd858790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fcd858820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3fcd84eea0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674302305421037834, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANpemL8Qvpa/MrdAPVfmGz8OT9C/ZFR4P9gIR74YitK8tRMGP8lpAr5+PfS+pspTPUwUrL9VIwA80zjtPkX1Jb/PYSi/9Emrv0q/Rj8cKUC+5QWdvtaCib+tTJG/W3pfO1aNhT8kDRY/mfAOP2TNfL/I0ZU/w4jevb8EBT9ZCLO/8YPOvs5P5cAkg+a+5LibP0ucAT/mb9G9v3UXv73cZD+AEsG/iG40O3eHYz/zo7K8VnsEPwoLnL8ow5O/6op5wCgCjT7861a/0zKvv0ePiryAW3W/62Dav0k+5b9kzXy/G8yMv1ELp7/nX6K9WWXtPjod3L43waM+wDuvvr/0L77/UwI/QYj7vMdr/r7ViD4+fwuCv+KDQD8B9Ck/4YfBPoDemL4P62G8T2wjPz4uFT8gHSI90aR0vjV/T7+cf5s/Vo2FPyQNFj+Z8A4/ZM18vzouuL/F85W/J/xXPWhfDj5/CTi+BLMAPwi76LxwS+U+kSvuPoa+IEAugiS/yzAiP+UCs796SX8+14VVPwJOB79Tuh09ZrXkvVAQAT8qKYU/bBecvk1guz/REpG/ZpsvvlaNhT/rYNq/mfAOP2TNfL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD3Bau2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARvCzPQAAAACzY/y/AAAAAJ8j0r0AAAAAQSD0PwAAAADE5549AAAAAJ/r2z8AAAAAYN3ZPQAAAADTNO2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg/M2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEyErz0AAAAAKjP5vwAAAABiD2g9AAAAAMs+3D8AAAAAS95zPQAAAABZJvY/AAAAAPJUsb0AAAAA5ePcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG6BULcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA08RA+AAAAAOco2r8AAAAAgtIAvgAAAACuC+8/AAAAAIagC74AAAAA/ej6PwAAAAC14AY+AAAAAIGo4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABO1II2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAl4utvAAAAADcN+W/AAAAAHFk9z0AAAAAmwrsPwAAAACXngg+AAAAAK6X/T8AAAAAiQvOPQAAAADfXADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKDLBSWJJoWMAWyUTegDjAF0lEdAqDJdTvRZ2nV9lChoBkdAoEKs8A7xNWgHTegDaAhHQKg47CFbmlt1fZQoaAZHQJulH7Kq4pdoB03oA2gIR0CoOjklVtGedX2UKGgGR0CY06tG/etTaAdN6ANoCEdAqD56n752yXV9lChoBkdAm1ZrBKtga2gHTegDaAhHQKg+zFGXokl1fZQoaAZHQJrQLxQSBbxoB03oA2gIR0CoRSoQOFxodX2UKGgGR0Cd7bcgQpWnaAdN6ANoCEdAqEZsQyylenV9lChoBkdAn1X4f0VafWgHTegDaAhHQKhKrGo73f11fZQoaAZHQJgYSdFvybxoB03oA2gIR0CoSvoFNcnmdX2UKGgGR0ChMJN5+pfhaAdN6ANoCEdAqFFFvwVj7XV9lChoBkdAn1rTyOJcgWgHTegDaAhHQKhSpB2OhkB1fZQoaAZHQJ3583o9s8BoB03oA2gIR0CoVu668QI2dX2UKGgGR0CdMHLZBcAzaAdN6ANoCEdAqFc8QEpy63V9lChoBkdAmxy0o0ALiWgHTegDaAhHQKhdnoEjgQ91fZQoaAZHQJlxXcO9WZJoB03oA2gIR0CoXu49X9zfdX2UKGgGR0Ce1sNKAavSaAdN6ANoCEdAqGM8FY+0PnV9lChoBkdAm/PM8TzunmgHTegDaAhHQKhjiuSwGGF1fZQoaAZHQJ7xXBciW3VoB03oA2gIR0CoaiG3F1jidX2UKGgGR0CbXpCe2/i6aAdN6ANoCEdAqGtq1NQCS3V9lChoBkdAnjwHxBmf5GgHTegDaAhHQKhv2pyZKFt1fZQoaAZHQJslWqYJE6VoB03oA2gIR0CocDMJIDoydX2UKGgGR0CdtAcVxjriaAdN6ANoCEdAqHad/OMVDnV9lChoBkdAmsiCiyprDmgHTegDaAhHQKh38Z2pyZN1fZQoaAZHQJJWNTGYKIBoB03oA2gIR0CofHxmK64EdX2UKGgGR0CSEvGOuJUHaAdN6ANoCEdAqHzPek56t3V9lChoBkdAmWn04vN/v2gHTegDaAhHQKiDSAf+0gN1fZQoaAZHQJTOQ/6frbBoB03oA2gIR0CohKLylN1ydX2UKGgGR0CcgSa7VawEaAdN6ANoCEdAqItKt1ZDA3V9lChoBkdAoCEk/lhgE2gHTegDaAhHQKiL2de6Zpl1fZQoaAZHQJKPdn3+MqBoB03oA2gIR0Cok9ca4tpVdX2UKGgGR0CdgVOMVDa5aAdN6ANoCEdAqJU3wiJO33V9lChoBkdAmUHX27FsHmgHTegDaAhHQKiZopOvdM11fZQoaAZHQKC1YcMEzO5oB03oA2gIR0ComfKDTSb6dX2UKGgGR0CfKZF4s3AEaAdN6ANoCEdAqKAq2MKkVXV9lChoBkdAn/IHcHnln2gHTegDaAhHQKihddE9dNZ1fZQoaAZHQJlrdTS9du5oB03oA2gIR0Copar5IpYtdX2UKGgGR0CcqLklNUOvaAdN6ANoCEdAqKX/b9If83V9lChoBkdAnkEYLb5/LGgHTegDaAhHQKiskQOFxn51fZQoaAZHQJ3xfkIX0oVoB03oA2gIR0CoreQS8J2MdX2UKGgGR0CfCs2hIvrXaAdN6ANoCEdAqLIxZ4fOlnV9lChoBkdAmoZbVawD/2gHTegDaAhHQKiygQQtjCp1fZQoaAZHQKAn6F49ovloB03oA2gIR0CouN6QNkOJdX2UKGgGR0CZpXQ8fV7QaAdN6ANoCEdAqLouTLW7OHV9lChoBkdAmuyhyfcvd2gHTegDaAhHQKi+cSB9Tgl1fZQoaAZHQKFj2zUI9kloB03oA2gIR0CovsBIFvAHdX2UKGgGR0CgjrhE0BOpaAdN6ANoCEdAqMVUQkHD8HV9lChoBkdAmF5KZ2IO6WgHTegDaAhHQKjGpKfWcz91fZQoaAZHQKAcQPeYUnJoB03oA2gIR0CoyvNnPE88dX2UKGgGR0CeyVMHbAUMaAdN6ANoCEdAqMtM4m1IAnV9lChoBkdAnubW3OObRWgHTegDaAhHQKjRt7FbVz91fZQoaAZHQJ7+YNkOI69oB03oA2gIR0Co0wiI+GGmdX2UKGgGR0CfUEBbwBo3aAdN6ANoCEdAqNdPyup0fnV9lChoBkdAoD3SAe7tiWgHTegDaAhHQKjXo3BHkLh1fZQoaAZHQKA4GeCCjDdoB03oA2gIR0Co3lsuez2OdX2UKGgGR0Cg842hIvrXaAdN6ANoCEdAqN+yVGCqZXV9lChoBkdAoIEAxcmjTWgHTegDaAhHQKjj7s3yZrp1fZQoaAZHQJ9RcGxD9floB03oA2gIR0Co5DyEUTL4dX2UKGgGR0CcdZn8sMAnaAdN6ANoCEdAqOr4mmce83V9lChoBkdAjaXjCYTkAGgHTegDaAhHQKjsXVtoBaN1fZQoaAZHQKBIUiV0Lc9oB03oA2gIR0Co8Jxjz7MxdX2UKGgGR0Cc58OaOPvKaAdN6ANoCEdAqPDz5mAbynV9lChoBkdAoRzKzZ6D5GgHTegDaAhHQKj3kc6Nly11fZQoaAZHQKAtIBe5WiloB03oA2gIR0Co+N48lolEdX2UKGgGR0CbYa925hBraAdN6ANoCEdAqP0tthuwYHV9lChoBkdAnzO4MWoFV2gHTegDaAhHQKj9eq//Nqx1fZQoaAZHQJ5ljdGiHqNoB03oA2gIR0CpA+3rdFfBdX2UKGgGR0CgCX/336AOaAdN6ANoCEdAqQU3Pqs2enV9lChoBkdAn6UxuGbkO2gHTegDaAhHQKkJrKGtZFJ1fZQoaAZHQKAnz9ZzPrxoB03oA2gIR0CpCgquKXOXdX2UKGgGR0CgOd7NbC79aAdN6ANoCEdAqRBzHAAQx3V9lChoBkdAoRO8IRh+fGgHTegDaAhHQKkRumfoRqZ1fZQoaAZHQKGxvEnb7CVoB03oA2gIR0CpFf4iosI3dX2UKGgGR0Cehwlj3EhraAdN6ANoCEdAqRZK3I+4b3V9lChoBkdAoba7cIqsl2gHTegDaAhHQKkcpqrR0EJ1fZQoaAZHQKCltSjQAuJoB03oA2gIR0CpHgzGPxQSdX2UKGgGR0Cf6dgKF7D3aAdN6ANoCEdAqSKvCGetjnV9lChoBkdAnOxAgTyrgmgHTegDaAhHQKkjAEoOQQt1fZQoaAZHQJtAMLy+YdBoB03oA2gIR0CpKZzKT0QLdX2UKGgGR0CeQ+FpPAO8aAdN6ANoCEdAqSr/VZs9CHV9lChoBkdAoH5SA6Mir2gHTegDaAhHQKkvYYVqN6x1fZQoaAZHQJj8wzWPLgZoB03oA2gIR0CpL7LU1AJLdX2UKGgGR0Cg/vE7nxJ/aAdN6ANoCEdAqTY3EZR8+nV9lChoBkdAoWK0DuBtlGgHTegDaAhHQKk3qE+xGDt1fZQoaAZHQKDW0IRh+fBoB03oA2gIR0CpO/XdTHbRdX2UKGgGR0CgxHiQcPvsaAdN6ANoCEdAqTxQht+CsnV9lChoBkdAkQ3xBu4wy2gHTegDaAhHQKlC7EbYK6Z1fZQoaAZHQKAx11jiGWVoB03oA2gIR0CpRDpM6BAfdX2UKGgGR0CeETykKu0UaAdN6ANoCEdAqUielqJuVHV9lChoBkdAnllHNorWiGgHTegDaAhHQKlI7o8IRiB1fZQoaAZHQJ33ax6fJ3hoB03oA2gIR0CpT4b83uNQdX2UKGgGR0CcFVFw1ivxaAdN6ANoCEdAqVDncN6PbXV9lChoBkdAnEv2ilBQemgHTegDaAhHQKlVPpudf9h1fZQoaAZHQJto9Li++M9oB03oA2gIR0CpVY5zHS4OdX2UKGgGR0CgFUoSlFc6aAdN6ANoCEdAqVwa/fwZwXV9lChoBkdAoBVxL26ClWgHTegDaAhHQKlddYbsF+x1fZQoaAZHQJ+nXp2U0N1oB03oA2gIR0CpYfJ8WsRydX2UKGgGR0Cfg5EKVpsXaAdN6ANoCEdAqWJID5j6N3V9lChoBkdAmgRf6oESumgHTegDaAhHQKlpExfOUt91fZQoaAZHQJfvSlO45LhoB03oA2gIR0CpamOiFj/ddX2UKGgGR0CZwNM8HObBaAdN6ANoCEdAqW6m6unuRnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e4ba32d0b0149a40984a800fff8125491ed4e0b9460ac0ee82b38a5dcbe993b
|
3 |
+
size 1048882
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1955.03167885734, "std_reward": 61.01188015157828, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T12:58:39.710563"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8185c3b0fbd4f274f8f77d7e30deecf23e55d7ab75c902982631d183bb81bed
|
3 |
+
size 2521
|