FBM commited on
Commit
2b6260b
1 Parent(s): 3c22bd1

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -5.54 +/- 1.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9c0c39cb8459d836f6ef4ffb1830f87e67859c09b27002d83fbd7f6021a5040
3
+ size 108143
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1a1726ac10>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f1a172684b0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674561599723674985,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0dXWPpj4nbkwgRc/0dXWPpj4nbkwgRc/0dXWPpj4nbkwgRc/0dXWPpj4nbkwgRc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm3uzv1uRhb+HBeM+fAuCPuhCnL73CyO+lfjRvZX+rr9+Yz4/+EZUPyLjsD8L0bi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADR1dY+mPiduTCBFz91fTs7MuTXu2G8eLvR1dY+mPiduTCBFz91fTs7MuTXu2G8eLvR1dY+mPiduTCBFz91fTs7MuTXu2G8eLvR1dY+mPiduTCBFz91fTs7MuTXu2G8eLuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 4.1960004e-01 -3.0130590e-04 5.9181499e-01]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01]]",
60
+ "desired_goal": "[[-1.4022096 -1.0434984 0.44340155]\n [ 0.25399387 -0.30519795 -0.15922533]\n [-0.10252491 -1.3671442 0.74370563]\n [ 0.8292079 1.3819315 -1.4438795 ]]",
61
+ "observation": "[[ 4.1960004e-01 -3.0130590e-04 5.9181499e-01 2.8608714e-03\n -6.5884823e-03 -3.7954079e-03]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01 2.8608714e-03\n -6.5884823e-03 -3.7954079e-03]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01 2.8608714e-03\n -6.5884823e-03 -3.7954079e-03]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01 2.8608714e-03\n -6.5884823e-03 -3.7954079e-03]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAj33HPQYIhT3nQJM+in89PCSnqb15wbA9A9M1vdTpJb0bWmI+HevvvUZ2Jbx1xpI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.09740745 0.06495671 0.28760454]\n [ 0.01156605 -0.08283833 0.08630652]\n [-0.04439069 -0.0405062 0.22104685]\n [-0.11714766 -0.010099 0.28667036]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImG2nrRFBD8CUhpRSlIwBbJRLMowBdJRHQKOTw3rleWx1fZQoaAZoCWgPQwjmkqrtJvgXwJSGlFKUaBVLMmgWR0Cjk4ToMa0hdX2UKGgGaAloD0MIGQKAY8/eAcCUhpRSlGgVSzJoFkdAo5NHjbSJCXV9lChoBmgJaA9DCFUS2QdZ9hzAlIaUUpRoFUsyaBZHQKOTB7pFCsx1fZQoaAZoCWgPQwgFoidlUpMYwJSGlFKUaBVLMmgWR0CjlKY8EFGHdX2UKGgGaAloD0MIm44AbhbvC8CUhpRSlGgVSzJoFkdAo5Rn5ckdFXV9lChoBmgJaA9DCNgsl43OGRXAlIaUUpRoFUsyaBZHQKOUKo5xR2t1fZQoaAZoCWgPQwh7gy9MpkoYwJSGlFKUaBVLMmgWR0Cjk+qPGQ0XdX2UKGgGaAloD0MIqpz2lJwTIsCUhpRSlGgVSzJoFkdAo5WHSDyvtHV9lChoBmgJaA9DCM+ey9QkuAjAlIaUUpRoFUsyaBZHQKOVSMAFPi11fZQoaAZoCWgPQwia0vpbAnAVwJSGlFKUaBVLMmgWR0CjlQstTUAldX2UKGgGaAloD0MIRZ25h4QvDcCUhpRSlGgVSzJoFkdAo5TLlA/s3XV9lChoBmgJaA9DCGoxeJj2jQzAlIaUUpRoFUsyaBZHQKOWZMzMzM11fZQoaAZoCWgPQwg9RKM7iD0QwJSGlFKUaBVLMmgWR0CjliYoZydXdX2UKGgGaAloD0MIk2+2uTHdDcCUhpRSlGgVSzJoFkdAo5Xo2S+xnnV9lChoBmgJaA9DCBr8/WK2lBvAlIaUUpRoFUsyaBZHQKOVqR+z+m51fZQoaAZoCWgPQwiOBvAWSFAUwJSGlFKUaBVLMmgWR0Cjl0PMSsbOdX2UKGgGaAloD0MIH0jeOZQhEcCUhpRSlGgVSzJoFkdAo5cFO45LiHV9lChoBmgJaA9DCLUYPEz7BhjAlIaUUpRoFUsyaBZHQKOWx7kXDWN1fZQoaAZoCWgPQwgz/KcbKLAUwJSGlFKUaBVLMmgWR0CjlogVwgkkdX2UKGgGaAloD0MIi06WWu9XDsCUhpRSlGgVSzJoFkdAo5glyo4uLHV9lChoBmgJaA9DCAPPvYdLDgvAlIaUUpRoFUsyaBZHQKOX5zg/C691fZQoaAZoCWgPQwjnGJC93j0BwJSGlFKUaBVLMmgWR0Cjl6mqo60ZdX2UKGgGaAloD0MI/Wg4ZW6OH8CUhpRSlGgVSzJoFkdAo5dptDUmUnV9lChoBmgJaA9DCOjAcoQMxBLAlIaUUpRoFUsyaBZHQKOZBpoK2KF1fZQoaAZoCWgPQwgfZcQFoNEHwJSGlFKUaBVLMmgWR0CjmMf642CNdX2UKGgGaAloD0MIYkhOJm5VFcCUhpRSlGgVSzJoFkdAo5iKdYnv2HV9lChoBmgJaA9DCI4/UdmwpgnAlIaUUpRoFUsyaBZHQKOYSn3L3bp1fZQoaAZoCWgPQwgofSHkvE8VwJSGlFKUaBVLMmgWR0CjmedadMCcdX2UKGgGaAloD0MI3nU25J/ZBMCUhpRSlGgVSzJoFkdAo5movlEJB3V9lChoBmgJaA9DCHui68IPvhPAlIaUUpRoFUsyaBZHQKOZa1F6Rhd1fZQoaAZoCWgPQwhPH4E//FwQwJSGlFKUaBVLMmgWR0CjmStkWhysdX2UKGgGaAloD0MI38DkRpF1B8CUhpRSlGgVSzJoFkdAo5rSePJaJXV9lChoBmgJaA9DCPGbwkoFVRPAlIaUUpRoFUsyaBZHQKOak9Zid8R1fZQoaAZoCWgPQwjKFd7lIm4QwJSGlFKUaBVLMmgWR0CjmlZGSZBtdX2UKGgGaAloD0MI9Ix9ycYDDcCUhpRSlGgVSzJoFkdAo5oWYc/+sHV9lChoBmgJaA9DCEDCMGDJdQTAlIaUUpRoFUsyaBZHQKObrAZ88cN1fZQoaAZoCWgPQwj9hokGKZgYwJSGlFKUaBVLMmgWR0Cjm21q33HrdX2UKGgGaAloD0MIJT53gv0HGsCUhpRSlGgVSzJoFkdAo5sv0TURWnV9lChoBmgJaA9DCMA8ZMqH4AnAlIaUUpRoFUsyaBZHQKOa785S3sp1fZQoaAZoCWgPQwhO0CaHTzoVwJSGlFKUaBVLMmgWR0CjnIkVnEl3dX2UKGgGaAloD0MIhQX3Ax4YFsCUhpRSlGgVSzJoFkdAo5xKcd5prXV9lChoBmgJaA9DCOsZwjHLPgLAlIaUUpRoFUsyaBZHQKOcDNbkfcN1fZQoaAZoCWgPQwhJhEawcf0FwJSGlFKUaBVLMmgWR0Cjm80DuBtldX2UKGgGaAloD0MIfXcrS3SWGMCUhpRSlGgVSzJoFkdAo51wxL0z03V9lChoBmgJaA9DCCHKF7SQ4A7AlIaUUpRoFUsyaBZHQKOdMiX6ZYx1fZQoaAZoCWgPQwjzy2CMSNQUwJSGlFKUaBVLMmgWR0CjnPTSLIgedX2UKGgGaAloD0MI3PP8aaN6AsCUhpRSlGgVSzJoFkdAo5y0/0NBnnV9lChoBmgJaA9DCKrwZ3izBgrAlIaUUpRoFUsyaBZHQKOeToX9BKN1fZQoaAZoCWgPQwhBR6ta0lEQwJSGlFKUaBVLMmgWR0CjnhA/LTx5dX2UKGgGaAloD0MIixagbTWLDcCUhpRSlGgVSzJoFkdAo53S0v4/NnV9lChoBmgJaA9DCNiarbzk3w7AlIaUUpRoFUsyaBZHQKOdks7MgU11fZQoaAZoCWgPQwgpIy4AjfIIwJSGlFKUaBVLMmgWR0CjnzXbM5fddX2UKGgGaAloD0MIg4jUtIvpFMCUhpRSlGgVSzJoFkdAo573RE4NqnV9lChoBmgJaA9DCEKZRpOLMQTAlIaUUpRoFUsyaBZHQKOeuaWHDaZ1fZQoaAZoCWgPQwhZxLDDmPQIwJSGlFKUaBVLMmgWR0CjnnmiQDFIdX2UKGgGaAloD0MIuOo6VFOyBcCUhpRSlGgVSzJoFkdAo6AaiudPL3V9lChoBmgJaA9DCOrsZHCUbBXAlIaUUpRoFUsyaBZHQKOf2+ZgG8p1fZQoaAZoCWgPQwhwC5bqAt4OwJSGlFKUaBVLMmgWR0Cjn55g5R0mdX2UKGgGaAloD0MIcayL22jgCsCUhpRSlGgVSzJoFkdAo59eo1k1/HV9lChoBmgJaA9DCDOJesGnWRHAlIaUUpRoFUsyaBZHQKOhA2oegct1fZQoaAZoCWgPQwheSIeHMD4AwJSGlFKUaBVLMmgWR0CjoMTH80k4dX2UKGgGaAloD0MI5s+3BUv1BsCUhpRSlGgVSzJoFkdAo6CHMbFS9HV9lChoBmgJaA9DCCYbD7bYLQfAlIaUUpRoFUsyaBZHQKOgR0MgEEF1fZQoaAZoCWgPQwgNNJ9zt9sfwJSGlFKUaBVLMmgWR0CjoezpgTh6dX2UKGgGaAloD0MIF/NzQ1PWCsCUhpRSlGgVSzJoFkdAo6GuVC5VfnV9lChoBmgJaA9DCDSGOUGbjBXAlIaUUpRoFUsyaBZHQKOhcRAbADd1fZQoaAZoCWgPQwif508b1VkXwJSGlFKUaBVLMmgWR0CjoTEsasIWdX2UKGgGaAloD0MItcagE0JHCcCUhpRSlGgVSzJoFkdAo6LSoMrmQ3V9lChoBmgJaA9DCC457pQOjiPAlIaUUpRoFUsyaBZHQKOik/N7jT91fZQoaAZoCWgPQwi9xFimX4INwJSGlFKUaBVLMmgWR0CjolZgG8mKdX2UKGgGaAloD0MIkXu6umNBGcCUhpRSlGgVSzJoFkdAo6IWcjJMg3V9lChoBmgJaA9DCCjWqfI9kxvAlIaUUpRoFUsyaBZHQKOjq/qPfbd1fZQoaAZoCWgPQwhnfF9cqjIbwJSGlFKUaBVLMmgWR0Cjo21n27FsdX2UKGgGaAloD0MInrMFhNazF8CUhpRSlGgVSzJoFkdAo6MwIt16mnV9lChoBmgJaA9DCH/7OnDOKBnAlIaUUpRoFUsyaBZHQKOi8CnxaxJ1fZQoaAZoCWgPQwiWQbXBiSj/v5SGlFKUaBVLMmgWR0CjpIJ+UhV3dX2UKGgGaAloD0MIFHXmHhKuHsCUhpRSlGgVSzJoFkdAo6REKG+K0nV9lChoBmgJaA9DCG+5+rFJrhTAlIaUUpRoFUsyaBZHQKOkBsenyd51fZQoaAZoCWgPQwhBRdWvdJ4GwJSGlFKUaBVLMmgWR0Cjo8c2rGR3dX2UKGgGaAloD0MIMC3qk9xBAsCUhpRSlGgVSzJoFkdAo6VxJ9RaYHV9lChoBmgJaA9DCEs+dhcomRjAlIaUUpRoFUsyaBZHQKOlMod+5OJ1fZQoaAZoCWgPQwjikA2ki60EwJSGlFKUaBVLMmgWR0CjpPUliSaFdX2UKGgGaAloD0MIweCaO/p3IMCUhpRSlGgVSzJoFkdAo6S1QIldC3V9lChoBmgJaA9DCLmI78SsBxXAlIaUUpRoFUsyaBZHQKOmU2WIGhV1fZQoaAZoCWgPQwiOjxZnDMMVwJSGlFKUaBVLMmgWR0CjphS75Ec9dX2UKGgGaAloD0MICvSJPEn6FMCUhpRSlGgVSzJoFkdAo6XXKlpGnXV9lChoBmgJaA9DCKrVV1cFGhfAlIaUUpRoFUsyaBZHQKOll4zJp351fZQoaAZoCWgPQwhBLQYP034BwJSGlFKUaBVLMmgWR0CjpzUVi4KAdX2UKGgGaAloD0MIeGFrtvICFcCUhpRSlGgVSzJoFkdAo6b2f7Jnx3V9lChoBmgJaA9DCExuFFlrKPu/lIaUUpRoFUsyaBZHQKOmuQBgeBB1fZQoaAZoCWgPQwiqLAq7KPr4v5SGlFKUaBVLMmgWR0CjpnkJKJ2udX2UKGgGaAloD0MIARdky/JVF8CUhpRSlGgVSzJoFkdAo6gVBMSK33V9lChoBmgJaA9DCODyWDMyOBDAlIaUUpRoFUsyaBZHQKOn1myPdVN1fZQoaAZoCWgPQwgHRIgrZy8fwJSGlFKUaBVLMmgWR0Cjp5kELYwqdX2UKGgGaAloD0MIPlxy3CntHsCUhpRSlGgVSzJoFkdAo6dZIJ7b+XV9lChoBmgJaA9DCKUV31D4bBnAlIaUUpRoFUsyaBZHQKOo9655JK91fZQoaAZoCWgPQwi5b7VOXB4TwJSGlFKUaBVLMmgWR0CjqLkUj9n9dX2UKGgGaAloD0MIzhjmBG2yAsCUhpRSlGgVSzJoFkdAo6h7jcVQAXV9lChoBmgJaA9DCEDbatYZfwXAlIaUUpRoFUsyaBZHQKOoO9kjHGV1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4640eb8af0b3f9d586b3a311a0b993609d3cf67f081e3a524ed50a8ffbc7c298
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57ea4a5a2c51583f0a6042b95e9cb9a6ceb570e5359d3914f80e4419ed505bf5
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1a1726ac10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1a172684b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674561599723674985, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0dXWPpj4nbkwgRc/0dXWPpj4nbkwgRc/0dXWPpj4nbkwgRc/0dXWPpj4nbkwgRc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm3uzv1uRhb+HBeM+fAuCPuhCnL73CyO+lfjRvZX+rr9+Yz4/+EZUPyLjsD8L0bi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADR1dY+mPiduTCBFz91fTs7MuTXu2G8eLvR1dY+mPiduTCBFz91fTs7MuTXu2G8eLvR1dY+mPiduTCBFz91fTs7MuTXu2G8eLvR1dY+mPiduTCBFz91fTs7MuTXu2G8eLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 4.1960004e-01 -3.0130590e-04 5.9181499e-01]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01]]", "desired_goal": "[[-1.4022096 -1.0434984 0.44340155]\n [ 0.25399387 -0.30519795 -0.15922533]\n [-0.10252491 -1.3671442 0.74370563]\n [ 0.8292079 1.3819315 -1.4438795 ]]", "observation": "[[ 4.1960004e-01 -3.0130590e-04 5.9181499e-01 2.8608714e-03\n -6.5884823e-03 -3.7954079e-03]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01 2.8608714e-03\n -6.5884823e-03 -3.7954079e-03]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01 2.8608714e-03\n -6.5884823e-03 -3.7954079e-03]\n [ 4.1960004e-01 -3.0130590e-04 5.9181499e-01 2.8608714e-03\n -6.5884823e-03 -3.7954079e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAj33HPQYIhT3nQJM+in89PCSnqb15wbA9A9M1vdTpJb0bWmI+HevvvUZ2Jbx1xpI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09740745 0.06495671 0.28760454]\n [ 0.01156605 -0.08283833 0.08630652]\n [-0.04439069 -0.0405062 0.22104685]\n [-0.11714766 -0.010099 0.28667036]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImG2nrRFBD8CUhpRSlIwBbJRLMowBdJRHQKOTw3rleWx1fZQoaAZoCWgPQwjmkqrtJvgXwJSGlFKUaBVLMmgWR0Cjk4ToMa0hdX2UKGgGaAloD0MIGQKAY8/eAcCUhpRSlGgVSzJoFkdAo5NHjbSJCXV9lChoBmgJaA9DCFUS2QdZ9hzAlIaUUpRoFUsyaBZHQKOTB7pFCsx1fZQoaAZoCWgPQwgFoidlUpMYwJSGlFKUaBVLMmgWR0CjlKY8EFGHdX2UKGgGaAloD0MIm44AbhbvC8CUhpRSlGgVSzJoFkdAo5Rn5ckdFXV9lChoBmgJaA9DCNgsl43OGRXAlIaUUpRoFUsyaBZHQKOUKo5xR2t1fZQoaAZoCWgPQwh7gy9MpkoYwJSGlFKUaBVLMmgWR0Cjk+qPGQ0XdX2UKGgGaAloD0MIqpz2lJwTIsCUhpRSlGgVSzJoFkdAo5WHSDyvtHV9lChoBmgJaA9DCM+ey9QkuAjAlIaUUpRoFUsyaBZHQKOVSMAFPi11fZQoaAZoCWgPQwia0vpbAnAVwJSGlFKUaBVLMmgWR0CjlQstTUAldX2UKGgGaAloD0MIRZ25h4QvDcCUhpRSlGgVSzJoFkdAo5TLlA/s3XV9lChoBmgJaA9DCGoxeJj2jQzAlIaUUpRoFUsyaBZHQKOWZMzMzM11fZQoaAZoCWgPQwg9RKM7iD0QwJSGlFKUaBVLMmgWR0CjliYoZydXdX2UKGgGaAloD0MIk2+2uTHdDcCUhpRSlGgVSzJoFkdAo5Xo2S+xnnV9lChoBmgJaA9DCBr8/WK2lBvAlIaUUpRoFUsyaBZHQKOVqR+z+m51fZQoaAZoCWgPQwiOBvAWSFAUwJSGlFKUaBVLMmgWR0Cjl0PMSsbOdX2UKGgGaAloD0MIH0jeOZQhEcCUhpRSlGgVSzJoFkdAo5cFO45LiHV9lChoBmgJaA9DCLUYPEz7BhjAlIaUUpRoFUsyaBZHQKOWx7kXDWN1fZQoaAZoCWgPQwgz/KcbKLAUwJSGlFKUaBVLMmgWR0CjlogVwgkkdX2UKGgGaAloD0MIi06WWu9XDsCUhpRSlGgVSzJoFkdAo5glyo4uLHV9lChoBmgJaA9DCAPPvYdLDgvAlIaUUpRoFUsyaBZHQKOX5zg/C691fZQoaAZoCWgPQwjnGJC93j0BwJSGlFKUaBVLMmgWR0Cjl6mqo60ZdX2UKGgGaAloD0MI/Wg4ZW6OH8CUhpRSlGgVSzJoFkdAo5dptDUmUnV9lChoBmgJaA9DCOjAcoQMxBLAlIaUUpRoFUsyaBZHQKOZBpoK2KF1fZQoaAZoCWgPQwgfZcQFoNEHwJSGlFKUaBVLMmgWR0CjmMf642CNdX2UKGgGaAloD0MIYkhOJm5VFcCUhpRSlGgVSzJoFkdAo5iKdYnv2HV9lChoBmgJaA9DCI4/UdmwpgnAlIaUUpRoFUsyaBZHQKOYSn3L3bp1fZQoaAZoCWgPQwgofSHkvE8VwJSGlFKUaBVLMmgWR0CjmedadMCcdX2UKGgGaAloD0MI3nU25J/ZBMCUhpRSlGgVSzJoFkdAo5movlEJB3V9lChoBmgJaA9DCHui68IPvhPAlIaUUpRoFUsyaBZHQKOZa1F6Rhd1fZQoaAZoCWgPQwhPH4E//FwQwJSGlFKUaBVLMmgWR0CjmStkWhysdX2UKGgGaAloD0MI38DkRpF1B8CUhpRSlGgVSzJoFkdAo5rSePJaJXV9lChoBmgJaA9DCPGbwkoFVRPAlIaUUpRoFUsyaBZHQKOak9Zid8R1fZQoaAZoCWgPQwjKFd7lIm4QwJSGlFKUaBVLMmgWR0CjmlZGSZBtdX2UKGgGaAloD0MI9Ix9ycYDDcCUhpRSlGgVSzJoFkdAo5oWYc/+sHV9lChoBmgJaA9DCEDCMGDJdQTAlIaUUpRoFUsyaBZHQKObrAZ88cN1fZQoaAZoCWgPQwj9hokGKZgYwJSGlFKUaBVLMmgWR0Cjm21q33HrdX2UKGgGaAloD0MIJT53gv0HGsCUhpRSlGgVSzJoFkdAo5sv0TURWnV9lChoBmgJaA9DCMA8ZMqH4AnAlIaUUpRoFUsyaBZHQKOa785S3sp1fZQoaAZoCWgPQwhO0CaHTzoVwJSGlFKUaBVLMmgWR0CjnIkVnEl3dX2UKGgGaAloD0MIhQX3Ax4YFsCUhpRSlGgVSzJoFkdAo5xKcd5prXV9lChoBmgJaA9DCOsZwjHLPgLAlIaUUpRoFUsyaBZHQKOcDNbkfcN1fZQoaAZoCWgPQwhJhEawcf0FwJSGlFKUaBVLMmgWR0Cjm80DuBtldX2UKGgGaAloD0MIfXcrS3SWGMCUhpRSlGgVSzJoFkdAo51wxL0z03V9lChoBmgJaA9DCCHKF7SQ4A7AlIaUUpRoFUsyaBZHQKOdMiX6ZYx1fZQoaAZoCWgPQwjzy2CMSNQUwJSGlFKUaBVLMmgWR0CjnPTSLIgedX2UKGgGaAloD0MI3PP8aaN6AsCUhpRSlGgVSzJoFkdAo5y0/0NBnnV9lChoBmgJaA9DCKrwZ3izBgrAlIaUUpRoFUsyaBZHQKOeToX9BKN1fZQoaAZoCWgPQwhBR6ta0lEQwJSGlFKUaBVLMmgWR0CjnhA/LTx5dX2UKGgGaAloD0MIixagbTWLDcCUhpRSlGgVSzJoFkdAo53S0v4/NnV9lChoBmgJaA9DCNiarbzk3w7AlIaUUpRoFUsyaBZHQKOdks7MgU11fZQoaAZoCWgPQwgpIy4AjfIIwJSGlFKUaBVLMmgWR0CjnzXbM5fddX2UKGgGaAloD0MIg4jUtIvpFMCUhpRSlGgVSzJoFkdAo573RE4NqnV9lChoBmgJaA9DCEKZRpOLMQTAlIaUUpRoFUsyaBZHQKOeuaWHDaZ1fZQoaAZoCWgPQwhZxLDDmPQIwJSGlFKUaBVLMmgWR0CjnnmiQDFIdX2UKGgGaAloD0MIuOo6VFOyBcCUhpRSlGgVSzJoFkdAo6AaiudPL3V9lChoBmgJaA9DCOrsZHCUbBXAlIaUUpRoFUsyaBZHQKOf2+ZgG8p1fZQoaAZoCWgPQwhwC5bqAt4OwJSGlFKUaBVLMmgWR0Cjn55g5R0mdX2UKGgGaAloD0MIcayL22jgCsCUhpRSlGgVSzJoFkdAo59eo1k1/HV9lChoBmgJaA9DCDOJesGnWRHAlIaUUpRoFUsyaBZHQKOhA2oegct1fZQoaAZoCWgPQwheSIeHMD4AwJSGlFKUaBVLMmgWR0CjoMTH80k4dX2UKGgGaAloD0MI5s+3BUv1BsCUhpRSlGgVSzJoFkdAo6CHMbFS9HV9lChoBmgJaA9DCCYbD7bYLQfAlIaUUpRoFUsyaBZHQKOgR0MgEEF1fZQoaAZoCWgPQwgNNJ9zt9sfwJSGlFKUaBVLMmgWR0CjoezpgTh6dX2UKGgGaAloD0MIF/NzQ1PWCsCUhpRSlGgVSzJoFkdAo6GuVC5VfnV9lChoBmgJaA9DCDSGOUGbjBXAlIaUUpRoFUsyaBZHQKOhcRAbADd1fZQoaAZoCWgPQwif508b1VkXwJSGlFKUaBVLMmgWR0CjoTEsasIWdX2UKGgGaAloD0MItcagE0JHCcCUhpRSlGgVSzJoFkdAo6LSoMrmQ3V9lChoBmgJaA9DCC457pQOjiPAlIaUUpRoFUsyaBZHQKOik/N7jT91fZQoaAZoCWgPQwi9xFimX4INwJSGlFKUaBVLMmgWR0CjolZgG8mKdX2UKGgGaAloD0MIkXu6umNBGcCUhpRSlGgVSzJoFkdAo6IWcjJMg3V9lChoBmgJaA9DCCjWqfI9kxvAlIaUUpRoFUsyaBZHQKOjq/qPfbd1fZQoaAZoCWgPQwhnfF9cqjIbwJSGlFKUaBVLMmgWR0Cjo21n27FsdX2UKGgGaAloD0MInrMFhNazF8CUhpRSlGgVSzJoFkdAo6MwIt16mnV9lChoBmgJaA9DCH/7OnDOKBnAlIaUUpRoFUsyaBZHQKOi8CnxaxJ1fZQoaAZoCWgPQwiWQbXBiSj/v5SGlFKUaBVLMmgWR0CjpIJ+UhV3dX2UKGgGaAloD0MIFHXmHhKuHsCUhpRSlGgVSzJoFkdAo6REKG+K0nV9lChoBmgJaA9DCG+5+rFJrhTAlIaUUpRoFUsyaBZHQKOkBsenyd51fZQoaAZoCWgPQwhBRdWvdJ4GwJSGlFKUaBVLMmgWR0Cjo8c2rGR3dX2UKGgGaAloD0MIMC3qk9xBAsCUhpRSlGgVSzJoFkdAo6VxJ9RaYHV9lChoBmgJaA9DCEs+dhcomRjAlIaUUpRoFUsyaBZHQKOlMod+5OJ1fZQoaAZoCWgPQwjikA2ki60EwJSGlFKUaBVLMmgWR0CjpPUliSaFdX2UKGgGaAloD0MIweCaO/p3IMCUhpRSlGgVSzJoFkdAo6S1QIldC3V9lChoBmgJaA9DCLmI78SsBxXAlIaUUpRoFUsyaBZHQKOmU2WIGhV1fZQoaAZoCWgPQwiOjxZnDMMVwJSGlFKUaBVLMmgWR0CjphS75Ec9dX2UKGgGaAloD0MICvSJPEn6FMCUhpRSlGgVSzJoFkdAo6XXKlpGnXV9lChoBmgJaA9DCKrVV1cFGhfAlIaUUpRoFUsyaBZHQKOll4zJp351fZQoaAZoCWgPQwhBLQYP034BwJSGlFKUaBVLMmgWR0CjpzUVi4KAdX2UKGgGaAloD0MIeGFrtvICFcCUhpRSlGgVSzJoFkdAo6b2f7Jnx3V9lChoBmgJaA9DCExuFFlrKPu/lIaUUpRoFUsyaBZHQKOmuQBgeBB1fZQoaAZoCWgPQwiqLAq7KPr4v5SGlFKUaBVLMmgWR0CjpnkJKJ2udX2UKGgGaAloD0MIARdky/JVF8CUhpRSlGgVSzJoFkdAo6gVBMSK33V9lChoBmgJaA9DCODyWDMyOBDAlIaUUpRoFUsyaBZHQKOn1myPdVN1fZQoaAZoCWgPQwgHRIgrZy8fwJSGlFKUaBVLMmgWR0Cjp5kELYwqdX2UKGgGaAloD0MIPlxy3CntHsCUhpRSlGgVSzJoFkdAo6dZIJ7b+XV9lChoBmgJaA9DCKUV31D4bBnAlIaUUpRoFUsyaBZHQKOo9655JK91fZQoaAZoCWgPQwi5b7VOXB4TwJSGlFKUaBVLMmgWR0CjqLkUj9n9dX2UKGgGaAloD0MIzhjmBG2yAsCUhpRSlGgVSzJoFkdAo6h7jcVQAXV9lChoBmgJaA9DCEDbatYZfwXAlIaUUpRoFUsyaBZHQKOoO9kjHGV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -5.536274975724519, "std_reward": 1.7935962122066018, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T12:43:37.101672"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9ccfc3188c1b204a5cb419abe39f16ee3d254f5fedfaefcc47188c4ff3160a2
3
+ size 3212