--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: BERT_model_new results: [] --- # BERT_model_new This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1206 - F1: 0.8301 ## Model description train_df = pd.read_csv('/content/drive/My Drive/DATASETS/wiki_toxic/train.csv')\ validation_df = pd.read_csv('/content/drive/My Drive/DATASETS/wiki_toxic/validation.csv')\ #test_df = pd.read_csv('/content/drive/My Drive/wiki_toxic/test.csv')\ frac = 0.9\ #TRAIN\ print(train_df.shape[0]) # get the number of rows in the dataframe\ rows_to_delete = train_df.sample(frac=frac, random_state=1)\ train_df = train_df.drop(rows_to_delete.index)\ print(train_df.shape[0])\ #VALIDATION\ print(validation_df.shape[0]) # get the number of rows in the dataframe\ rows_to_delete = validation_df.sample(frac=frac, random_state=1)\ validation_df = validation_df.drop(rows_to_delete.index)\ print(validation_df.shape[0])\ ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 399 | 0.0940 | 0.8273 | | 0.1262 | 2.0 | 798 | 0.1206 | 0.8301 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3