Message
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.27 +/- 20.67
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f614ae3ff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f614ae44040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f614ae440d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f614ae44160>", "_build": "<function ActorCriticPolicy._build at 0x7f614ae441f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f614ae44280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f614ae44310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f614ae443a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f614ae44430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f614ae444c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f614ae44550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f614ae3d8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673346805635313891, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3NmD6APxU/U3H9vQlnfb4Ni489fbniuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICKwcWmQbckCUhpRSlIwBbJRNLwGMAXSUR0CzdlRw++uedX2UKGgGaAloD0MIA9AoXfqpakCUhpRSlGgVTQ4BaBZHQLN2tFpPAO91fZQoaAZoCWgPQwiLMhtkEnVwQJSGlFKUaBVNDgFoFkdAs3cSlCTlk3V9lChoBmgJaA9DCGPwMO2b6W9AlIaUUpRoFU0PAWgWR0CzeOQpazNVdX2UKGgGaAloD0MI1uQpq+keb0CUhpRSlGgVTRYBaBZHQLN5RYAbQ1J1fZQoaAZoCWgPQwhivOZVHUpvQJSGlFKUaBVNHgFoFkdAs3mrdAPd23V9lChoBmgJaA9DCKJD4EigQXFAlIaUUpRoFU0hAWgWR0Czeg4HTqjadX2UKGgGaAloD0MIdvpBXWRZckCUhpRSlGgVTTUBaBZHQLN6dpSJj2B1fZQoaAZoCWgPQwgX1LfM6SJsQJSGlFKUaBVNLwFoFkdAs3riscQyynV9lChoBmgJaA9DCNNM9zop72xAlIaUUpRoFU0aAWgWR0Cze0W9cry2dX2UKGgGaAloD0MI0Joff+lfY0CUhpRSlGgVTegDaBZHQLN+p9rGipN1fZQoaAZoCWgPQwhzofKv5bxuQJSGlFKUaBVNBgFoFkdAs38GrxRVInV9lChoBmgJaA9DCN0J9l8nJXFAlIaUUpRoFU0cAWgWR0Czf27f51vEdX2UKGgGaAloD0MIfCjRkkfybkCUhpRSlGgVTRoBaBZHQLN/zhBqsU91fZQoaAZoCWgPQwj8bU+Q2DlyQJSGlFKUaBVNNQFoFkdAs4A9BnjABXV9lChoBmgJaA9DCKcjgJsFGHBAlIaUUpRoFU0FAWgWR0CzggcXenAJdX2UKGgGaAloD0MI8E+pEuV3b0CUhpRSlGgVTRQBaBZHQLOCZUUfxMF1fZQoaAZoCWgPQwhmMEYkCt1sQJSGlFKUaBVNJQFoFkdAs4LOmHgxanV9lChoBmgJaA9DCLtfBfiuEHFAlIaUUpRoFU0YAWgWR0CzgzSMglnidX2UKGgGaAloD0MIcvikE0kkckCUhpRSlGgVTT8BaBZHQLODovv0AcV1fZQoaAZoCWgPQwjS5GIMLMBwQJSGlFKUaBVNKAFoFkdAs4QL3UQTVXV9lChoBmgJaA9DCEOu1LMglEBAlIaUUpRoFU0RAWgWR0CzhGdh7VridX2UKGgGaAloD0MIUBvV6QCscUCUhpRSlGgVTQABaBZHQLOGLxlxwQ11fZQoaAZoCWgPQwgGZK93/7RuQJSGlFKUaBVNCgFoFkdAs4aMJJGvwHV9lChoBmgJaA9DCMPzUrEx/29AlIaUUpRoFU0PAWgWR0CzhuqS5iEydX2UKGgGaAloD0MIoyO5/AcqbkCUhpRSlGgVTSIBaBZHQLOHT3BYV7B1fZQoaAZoCWgPQwip9ul4jHVwQJSGlFKUaBVNIAFoFkdAs4ex+z+m33V9lChoBmgJaA9DCJvo81EGBnFAlIaUUpRoFU00AWgWR0CziCACW/rTdX2UKGgGaAloD0MIH/KWq5/ucECUhpRSlGgVTR8BaBZHQLOIhflIVdp1fZQoaAZoCWgPQwiuYYbGk9dtQJSGlFKUaBVNFwFoFkdAs4pZFOO803V9lChoBmgJaA9DCOVEuwppqnFAlIaUUpRoFU0EAWgWR0CzirbiVB2PdX2UKGgGaAloD0MIz2bV52pNbUCUhpRSlGgVTSEBaBZHQLOLJAZbY9R1fZQoaAZoCWgPQwjfiVkvhotvQJSGlFKUaBVNBgFoFkdAs4uHLZBcA3V9lChoBmgJaA9DCJ2DZ0KTlnBAlIaUUpRoFU0nAWgWR0Czi/QEMb3odX2UKGgGaAloD0MI0F/oEeOicECUhpRSlGgVTRQBaBZHQLOMXQ+UyHp1fZQoaAZoCWgPQwgs0y8Rr85wQJSGlFKUaBVNCAFoFkdAs4y9hMJyAHV9lChoBmgJaA9DCKH0hZDzW25AlIaUUpRoFU0RAWgWR0CzjR8mKIi1dX2UKGgGaAloD0MIwR4TKU0Pb0CUhpRSlGgVTQMBaBZHQLOO6l4C6pZ1fZQoaAZoCWgPQwgcXDrmvJdwQJSGlFKUaBVNDAFoFkdAs49HOPeYUnV9lChoBmgJaA9DCD84nzpWY29AlIaUUpRoFU0MAWgWR0Czj6HnhbW3dX2UKGgGaAloD0MIMjz2s9jKcECUhpRSlGgVTQoBaBZHQLOP/AYHgP51fZQoaAZoCWgPQwjs9lll5hdyQJSGlFKUaBVNGAFoFkdAs5BXGGVRk3V9lChoBmgJaA9DCKW+LO3UZnBAlIaUUpRoFU0PAWgWR0CzkLEm2LHddX2UKGgGaAloD0MItRX7y640cUCUhpRSlGgVTTEBaBZHQLORGI8QqZt1fZQoaAZoCWgPQwhNTu0Mkz1yQJSGlFKUaBVNGQFoFkdAs5Lkh2W6b3V9lChoBmgJaA9DCBNkBFT4qXBAlIaUUpRoFU0oAWgWR0Czk1bjYI0JdX2UKGgGaAloD0MIKVlOQmkcbkCUhpRSlGgVS/5oFkdAs5Or+CK77XV9lChoBmgJaA9DCC+FB83uA3BAlIaUUpRoFU0pAWgWR0CzlBYKhL5AdX2UKGgGaAloD0MIbSBdbFo+bkCUhpRSlGgVTRsBaBZHQLOUemITGo91fZQoaAZoCWgPQwjRsYNKnD1wQJSGlFKUaBVNAgFoFkdAs5TZzBAOa3V9lChoBmgJaA9DCIEExY/xhnBAlIaUUpRoFU0FAWgWR0CzlTb2xptadX2UKGgGaAloD0MIf6FHjN7ncECUhpRSlGgVTQQBaBZHQLOVk8nNPgx1fZQoaAZoCWgPQwjytPzAlTRxQJSGlFKUaBVNDwFoFkdAs5dobm2b5XV9lChoBmgJaA9DCJT5R9+kDHBAlIaUUpRoFU0cAWgWR0Czl86GgzxgdX2UKGgGaAloD0MIv7uVJTqYb0CUhpRSlGgVTQUBaBZHQLOYMgy/KyR1fZQoaAZoCWgPQwgNqg1OBOlwQJSGlFKUaBVNHQFoFkdAs5iUHE/B33V9lChoBmgJaA9DCPX3UnhQ8XFAlIaUUpRoFU1RAWgWR0CzmQs7p3X7dX2UKGgGaAloD0MIGjT0T3APckCUhpRSlGgVTQcBaBZHQLOZbqsEJSl1fZQoaAZoCWgPQwiskV1pGSdwQJSGlFKUaBVNDQFoFkdAs5nOarmyPnV9lChoBmgJaA9DCJPDJ52IrnFAlIaUUpRoFU0fAWgWR0Czm5+OCGvfdX2UKGgGaAloD0MInFPJAJBTckCUhpRSlGgVTQwBaBZHQLOcBjua4MF1fZQoaAZoCWgPQwiLbr2mx0FwQJSGlFKUaBVNGgFoFkdAs5x2yMUAUHV9lChoBmgJaA9DCB7iH7a0t3BAlIaUUpRoFU0iAWgWR0CznOXlfZ27dX2UKGgGaAloD0MINXugFZi+b0CUhpRSlGgVTTMBaBZHQLOdWvOyE+R1fZQoaAZoCWgPQwjxoURLHuFvQJSGlFKUaBVNGgFoFkdAs52/fP5YYHV9lChoBmgJaA9DCLPPY5TnxHBAlIaUUpRoFU0bAWgWR0CznigqAjIJdX2UKGgGaAloD0MIK061FuaOcECUhpRSlGgVTQ4BaBZHQLOf/7O3UhF1fZQoaAZoCWgPQwgC1T+IJG9xQJSGlFKUaBVNEgFoFkdAs6BgEW69TXV9lChoBmgJaA9DCASNmUS9Nm1AlIaUUpRoFU0BAWgWR0CzoL3Yg7o0dX2UKGgGaAloD0MIDoXP1gELcUCUhpRSlGgVTSEBaBZHQLOhJkuHvc91fZQoaAZoCWgPQwiwy/CfroBwQJSGlFKUaBVL/mgWR0CzoYMoH9m6dX2UKGgGaAloD0MIg7709mcoZUCUhpRSlGgVTegDaBZHQLOkhq33HrB1fZQoaAZoCWgPQwg2W3nJf9ZsQJSGlFKUaBVNEgFoFkdAs6Tn5zo2XXV9lChoBmgJaA9DCP6d7dGbw3BAlIaUUpRoFU0KAWgWR0CzpUkDyOJddX2UKGgGaAloD0MILGaEt4cecUCUhpRSlGgVTRoBaBZHQLOlsWTot+V1fZQoaAZoCWgPQwiDE9Gvbf5xQJSGlFKUaBVNEAFoFkdAs6YWGBWge3V9lChoBmgJaA9DCGvxKQBGVnBAlIaUUpRoFUv+aBZHQLOmcwaisXB1fZQoaAZoCWgPQwiz0Tk/xYBkQJSGlFKUaBVN6ANoFkdAs6l5F9a2W3V9lChoBmgJaA9DCPUPIhmyyHBAlIaUUpRoFU0MAWgWR0CzqdrkXDWLdX2UKGgGaAloD0MI2bERiJdKcUCUhpRSlGgVTUgBaBZHQLOqUpOerdZ1fZQoaAZoCWgPQwh2+daHtU9yQJSGlFKUaBVNNgFoFkdAs6rLYg7o0XV9lChoBmgJaA9DCHgLJCi+unFAlIaUUpRoFU06AWgWR0CzqzfCVKPGdX2UKGgGaAloD0MIkQn4NRI/cUCUhpRSlGgVTQ8BaBZHQLOrnCV8kUt1fZQoaAZoCWgPQwjbvkf9dftvQJSGlFKUaBVNCAFoFkdAs61re2uxKXV9lChoBmgJaA9DCAGkNnHyTnFAlIaUUpRoFU0KAWgWR0Czrc/73wkPdX2UKGgGaAloD0MIwLSoT/L8cUCUhpRSlGgVS/9oFkdAs64tPZZjhHV9lChoBmgJaA9DCOwYV1ycpnFAlIaUUpRoFU0MAWgWR0CzrpPIKc/ddX2UKGgGaAloD0MIBvNXyFzocUCUhpRSlGgVTRUBaBZHQLOu96Mzdk91fZQoaAZoCWgPQwgBhXr6SJRwQJSGlFKUaBVNDQFoFkdAs69jCUHIIXV9lChoBmgJaA9DCJDZWfSOJHFAlIaUUpRoFU0kAWgWR0Czr8WdEsredX2UKGgGaAloD0MIdLSqJZ24bkCUhpRSlGgVTSMBaBZHQLOxqC9h7Vt1fZQoaAZoCWgPQwg1YfvJWFtxQJSGlFKUaBVNIgFoFkdAs7IU5U96knV9lChoBmgJaA9DCAWKWMSwum9AlIaUUpRoFU0hAWgWR0CzsnfbwjMWdX2UKGgGaAloD0MIKJ1IMFWvckCUhpRSlGgVTQsBaBZHQLOy2xASnLt1fZQoaAZoCWgPQwhJu9HH/PJvQJSGlFKUaBVNFgFoFkdAs7M/2Cdz4nV9lChoBmgJaA9DCLzK2qb4H2RAlIaUUpRoFU3oA2gWR0CztnWys0YTdX2UKGgGaAloD0MItJHrppQRXkCUhpRSlGgVTegDaBZHQLO43ixVyWB1fZQoaAZoCWgPQwiwAny3ebdwQJSGlFKUaBVNEAFoFkdAs7k7CpFTenV9lChoBmgJaA9DCAuz0M6pKnBAlIaUUpRoFU0ZAWgWR0CzuZyAhB7edX2UKGgGaAloD0MIV5dTAuLrbkCUhpRSlGgVTRgBaBZHQLO5/Qnx8Up1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9780, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14eae74c962089ca9842b27b74d05a34c71c23ae6a5ff484da07ddd77feb2a88
|
3 |
+
size 146546
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f614ae3ff70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f614ae44040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f614ae440d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f614ae44160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f614ae441f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f614ae44280>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f614ae44310>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f614ae443a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f614ae44430>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f614ae444c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f614ae44550>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f614ae3d8d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 1001472,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673346805635313891,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3NmD6APxU/U3H9vQlnfb4Ni489fbniuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICKwcWmQbckCUhpRSlIwBbJRNLwGMAXSUR0CzdlRw++uedX2UKGgGaAloD0MIA9AoXfqpakCUhpRSlGgVTQ4BaBZHQLN2tFpPAO91fZQoaAZoCWgPQwiLMhtkEnVwQJSGlFKUaBVNDgFoFkdAs3cSlCTlk3V9lChoBmgJaA9DCGPwMO2b6W9AlIaUUpRoFU0PAWgWR0CzeOQpazNVdX2UKGgGaAloD0MI1uQpq+keb0CUhpRSlGgVTRYBaBZHQLN5RYAbQ1J1fZQoaAZoCWgPQwhivOZVHUpvQJSGlFKUaBVNHgFoFkdAs3mrdAPd23V9lChoBmgJaA9DCKJD4EigQXFAlIaUUpRoFU0hAWgWR0Czeg4HTqjadX2UKGgGaAloD0MIdvpBXWRZckCUhpRSlGgVTTUBaBZHQLN6dpSJj2B1fZQoaAZoCWgPQwgX1LfM6SJsQJSGlFKUaBVNLwFoFkdAs3riscQyynV9lChoBmgJaA9DCNNM9zop72xAlIaUUpRoFU0aAWgWR0Cze0W9cry2dX2UKGgGaAloD0MI0Joff+lfY0CUhpRSlGgVTegDaBZHQLN+p9rGipN1fZQoaAZoCWgPQwhzofKv5bxuQJSGlFKUaBVNBgFoFkdAs38GrxRVInV9lChoBmgJaA9DCN0J9l8nJXFAlIaUUpRoFU0cAWgWR0Czf27f51vEdX2UKGgGaAloD0MIfCjRkkfybkCUhpRSlGgVTRoBaBZHQLN/zhBqsU91fZQoaAZoCWgPQwj8bU+Q2DlyQJSGlFKUaBVNNQFoFkdAs4A9BnjABXV9lChoBmgJaA9DCKcjgJsFGHBAlIaUUpRoFU0FAWgWR0CzggcXenAJdX2UKGgGaAloD0MI8E+pEuV3b0CUhpRSlGgVTRQBaBZHQLOCZUUfxMF1fZQoaAZoCWgPQwhmMEYkCt1sQJSGlFKUaBVNJQFoFkdAs4LOmHgxanV9lChoBmgJaA9DCLtfBfiuEHFAlIaUUpRoFU0YAWgWR0CzgzSMglnidX2UKGgGaAloD0MIcvikE0kkckCUhpRSlGgVTT8BaBZHQLODovv0AcV1fZQoaAZoCWgPQwjS5GIMLMBwQJSGlFKUaBVNKAFoFkdAs4QL3UQTVXV9lChoBmgJaA9DCEOu1LMglEBAlIaUUpRoFU0RAWgWR0CzhGdh7VridX2UKGgGaAloD0MIUBvV6QCscUCUhpRSlGgVTQABaBZHQLOGLxlxwQ11fZQoaAZoCWgPQwgGZK93/7RuQJSGlFKUaBVNCgFoFkdAs4aMJJGvwHV9lChoBmgJaA9DCMPzUrEx/29AlIaUUpRoFU0PAWgWR0CzhuqS5iEydX2UKGgGaAloD0MIoyO5/AcqbkCUhpRSlGgVTSIBaBZHQLOHT3BYV7B1fZQoaAZoCWgPQwip9ul4jHVwQJSGlFKUaBVNIAFoFkdAs4ex+z+m33V9lChoBmgJaA9DCJvo81EGBnFAlIaUUpRoFU00AWgWR0CziCACW/rTdX2UKGgGaAloD0MIH/KWq5/ucECUhpRSlGgVTR8BaBZHQLOIhflIVdp1fZQoaAZoCWgPQwiuYYbGk9dtQJSGlFKUaBVNFwFoFkdAs4pZFOO803V9lChoBmgJaA9DCOVEuwppqnFAlIaUUpRoFU0EAWgWR0CzirbiVB2PdX2UKGgGaAloD0MIz2bV52pNbUCUhpRSlGgVTSEBaBZHQLOLJAZbY9R1fZQoaAZoCWgPQwjfiVkvhotvQJSGlFKUaBVNBgFoFkdAs4uHLZBcA3V9lChoBmgJaA9DCJ2DZ0KTlnBAlIaUUpRoFU0nAWgWR0Czi/QEMb3odX2UKGgGaAloD0MI0F/oEeOicECUhpRSlGgVTRQBaBZHQLOMXQ+UyHp1fZQoaAZoCWgPQwgs0y8Rr85wQJSGlFKUaBVNCAFoFkdAs4y9hMJyAHV9lChoBmgJaA9DCKH0hZDzW25AlIaUUpRoFU0RAWgWR0CzjR8mKIi1dX2UKGgGaAloD0MIwR4TKU0Pb0CUhpRSlGgVTQMBaBZHQLOO6l4C6pZ1fZQoaAZoCWgPQwgcXDrmvJdwQJSGlFKUaBVNDAFoFkdAs49HOPeYUnV9lChoBmgJaA9DCD84nzpWY29AlIaUUpRoFU0MAWgWR0Czj6HnhbW3dX2UKGgGaAloD0MIMjz2s9jKcECUhpRSlGgVTQoBaBZHQLOP/AYHgP51fZQoaAZoCWgPQwjs9lll5hdyQJSGlFKUaBVNGAFoFkdAs5BXGGVRk3V9lChoBmgJaA9DCKW+LO3UZnBAlIaUUpRoFU0PAWgWR0CzkLEm2LHddX2UKGgGaAloD0MItRX7y640cUCUhpRSlGgVTTEBaBZHQLORGI8QqZt1fZQoaAZoCWgPQwhNTu0Mkz1yQJSGlFKUaBVNGQFoFkdAs5Lkh2W6b3V9lChoBmgJaA9DCBNkBFT4qXBAlIaUUpRoFU0oAWgWR0Czk1bjYI0JdX2UKGgGaAloD0MIKVlOQmkcbkCUhpRSlGgVS/5oFkdAs5Or+CK77XV9lChoBmgJaA9DCC+FB83uA3BAlIaUUpRoFU0pAWgWR0CzlBYKhL5AdX2UKGgGaAloD0MIbSBdbFo+bkCUhpRSlGgVTRsBaBZHQLOUemITGo91fZQoaAZoCWgPQwjRsYNKnD1wQJSGlFKUaBVNAgFoFkdAs5TZzBAOa3V9lChoBmgJaA9DCIEExY/xhnBAlIaUUpRoFU0FAWgWR0CzlTb2xptadX2UKGgGaAloD0MIf6FHjN7ncECUhpRSlGgVTQQBaBZHQLOVk8nNPgx1fZQoaAZoCWgPQwjytPzAlTRxQJSGlFKUaBVNDwFoFkdAs5dobm2b5XV9lChoBmgJaA9DCJT5R9+kDHBAlIaUUpRoFU0cAWgWR0Czl86GgzxgdX2UKGgGaAloD0MIv7uVJTqYb0CUhpRSlGgVTQUBaBZHQLOYMgy/KyR1fZQoaAZoCWgPQwgNqg1OBOlwQJSGlFKUaBVNHQFoFkdAs5iUHE/B33V9lChoBmgJaA9DCPX3UnhQ8XFAlIaUUpRoFU1RAWgWR0CzmQs7p3X7dX2UKGgGaAloD0MIGjT0T3APckCUhpRSlGgVTQcBaBZHQLOZbqsEJSl1fZQoaAZoCWgPQwiskV1pGSdwQJSGlFKUaBVNDQFoFkdAs5nOarmyPnV9lChoBmgJaA9DCJPDJ52IrnFAlIaUUpRoFU0fAWgWR0Czm5+OCGvfdX2UKGgGaAloD0MInFPJAJBTckCUhpRSlGgVTQwBaBZHQLOcBjua4MF1fZQoaAZoCWgPQwiLbr2mx0FwQJSGlFKUaBVNGgFoFkdAs5x2yMUAUHV9lChoBmgJaA9DCB7iH7a0t3BAlIaUUpRoFU0iAWgWR0CznOXlfZ27dX2UKGgGaAloD0MINXugFZi+b0CUhpRSlGgVTTMBaBZHQLOdWvOyE+R1fZQoaAZoCWgPQwjxoURLHuFvQJSGlFKUaBVNGgFoFkdAs52/fP5YYHV9lChoBmgJaA9DCLPPY5TnxHBAlIaUUpRoFU0bAWgWR0CznigqAjIJdX2UKGgGaAloD0MIK061FuaOcECUhpRSlGgVTQ4BaBZHQLOf/7O3UhF1fZQoaAZoCWgPQwgC1T+IJG9xQJSGlFKUaBVNEgFoFkdAs6BgEW69TXV9lChoBmgJaA9DCASNmUS9Nm1AlIaUUpRoFU0BAWgWR0CzoL3Yg7o0dX2UKGgGaAloD0MIDoXP1gELcUCUhpRSlGgVTSEBaBZHQLOhJkuHvc91fZQoaAZoCWgPQwiwy/CfroBwQJSGlFKUaBVL/mgWR0CzoYMoH9m6dX2UKGgGaAloD0MIg7709mcoZUCUhpRSlGgVTegDaBZHQLOkhq33HrB1fZQoaAZoCWgPQwg2W3nJf9ZsQJSGlFKUaBVNEgFoFkdAs6Tn5zo2XXV9lChoBmgJaA9DCP6d7dGbw3BAlIaUUpRoFU0KAWgWR0CzpUkDyOJddX2UKGgGaAloD0MILGaEt4cecUCUhpRSlGgVTRoBaBZHQLOlsWTot+V1fZQoaAZoCWgPQwiDE9Gvbf5xQJSGlFKUaBVNEAFoFkdAs6YWGBWge3V9lChoBmgJaA9DCGvxKQBGVnBAlIaUUpRoFUv+aBZHQLOmcwaisXB1fZQoaAZoCWgPQwiz0Tk/xYBkQJSGlFKUaBVN6ANoFkdAs6l5F9a2W3V9lChoBmgJaA9DCPUPIhmyyHBAlIaUUpRoFU0MAWgWR0CzqdrkXDWLdX2UKGgGaAloD0MI2bERiJdKcUCUhpRSlGgVTUgBaBZHQLOqUpOerdZ1fZQoaAZoCWgPQwh2+daHtU9yQJSGlFKUaBVNNgFoFkdAs6rLYg7o0XV9lChoBmgJaA9DCHgLJCi+unFAlIaUUpRoFU06AWgWR0CzqzfCVKPGdX2UKGgGaAloD0MIkQn4NRI/cUCUhpRSlGgVTQ8BaBZHQLOrnCV8kUt1fZQoaAZoCWgPQwjbvkf9dftvQJSGlFKUaBVNCAFoFkdAs61re2uxKXV9lChoBmgJaA9DCAGkNnHyTnFAlIaUUpRoFU0KAWgWR0Czrc/73wkPdX2UKGgGaAloD0MIwLSoT/L8cUCUhpRSlGgVS/9oFkdAs64tPZZjhHV9lChoBmgJaA9DCOwYV1ycpnFAlIaUUpRoFU0MAWgWR0CzrpPIKc/ddX2UKGgGaAloD0MIBvNXyFzocUCUhpRSlGgVTRUBaBZHQLOu96Mzdk91fZQoaAZoCWgPQwgBhXr6SJRwQJSGlFKUaBVNDQFoFkdAs69jCUHIIXV9lChoBmgJaA9DCJDZWfSOJHFAlIaUUpRoFU0kAWgWR0Czr8WdEsredX2UKGgGaAloD0MIdLSqJZ24bkCUhpRSlGgVTSMBaBZHQLOxqC9h7Vt1fZQoaAZoCWgPQwg1YfvJWFtxQJSGlFKUaBVNIgFoFkdAs7IU5U96knV9lChoBmgJaA9DCAWKWMSwum9AlIaUUpRoFU0hAWgWR0CzsnfbwjMWdX2UKGgGaAloD0MIKJ1IMFWvckCUhpRSlGgVTQsBaBZHQLOy2xASnLt1fZQoaAZoCWgPQwhJu9HH/PJvQJSGlFKUaBVNFgFoFkdAs7M/2Cdz4nV9lChoBmgJaA9DCLzK2qb4H2RAlIaUUpRoFU3oA2gWR0CztnWys0YTdX2UKGgGaAloD0MItJHrppQRXkCUhpRSlGgVTegDaBZHQLO43ixVyWB1fZQoaAZoCWgPQwiwAny3ebdwQJSGlFKUaBVNEAFoFkdAs7k7CpFTenV9lChoBmgJaA9DCAuz0M6pKnBAlIaUUpRoFU0ZAWgWR0CzuZyAhB7edX2UKGgGaAloD0MIV5dTAuLrbkCUhpRSlGgVTRgBaBZHQLO5/Qnx8Up1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 9780,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87d15b9af913616afa2222f7d7c9ef44667a645d7967c3b4470d67f2da8accdd
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6d6d6e4f8e455431bf7356a38876650a063cd05beb782fca824640e5416f748
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (154 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.2735172750931, "std_reward": 20.66784849997402, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T11:47:35.861862"}
|