FINGU-AI commited on
Commit
faabe96
·
verified ·
1 Parent(s): 3a262f6

Update README.md

Browse files

remove training details

Files changed (1) hide show
  1. README.md +0 -151
README.md CHANGED
@@ -594,157 +594,6 @@ You can finetune this model on your own dataset.
594
  *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
595
  -->
596
 
597
- ## Training Details
598
-
599
- ### Training Hyperparameters
600
- #### Non-Default Hyperparameters
601
-
602
- - `eval_strategy`: steps
603
- - `per_device_eval_batch_size`: 4
604
- - `gradient_accumulation_steps`: 4
605
- - `learning_rate`: 2e-05
606
- - `lr_scheduler_type`: cosine
607
- - `warmup_ratio`: 0.1
608
- - `warmup_steps`: 5
609
- - `bf16`: True
610
- - `tf32`: True
611
- - `optim`: adamw_torch_fused
612
- - `gradient_checkpointing`: True
613
- - `gradient_checkpointing_kwargs`: {'use_reentrant': False}
614
- - `batch_sampler`: no_duplicates
615
-
616
- #### All Hyperparameters
617
- <details><summary>Click to expand</summary>
618
-
619
- - `overwrite_output_dir`: False
620
- - `do_predict`: False
621
- - `eval_strategy`: steps
622
- - `prediction_loss_only`: True
623
- - `per_device_train_batch_size`: 8
624
- - `per_device_eval_batch_size`: 4
625
- - `per_gpu_train_batch_size`: None
626
- - `per_gpu_eval_batch_size`: None
627
- - `gradient_accumulation_steps`: 4
628
- - `eval_accumulation_steps`: None
629
- - `learning_rate`: 2e-05
630
- - `weight_decay`: 0.0
631
- - `adam_beta1`: 0.9
632
- - `adam_beta2`: 0.999
633
- - `adam_epsilon`: 1e-08
634
- - `max_grad_norm`: 1.0
635
- - `num_train_epochs`: 3
636
- - `max_steps`: -1
637
- - `lr_scheduler_type`: cosine
638
- - `lr_scheduler_kwargs`: {}
639
- - `warmup_ratio`: 0.1
640
- - `warmup_steps`: 5
641
- - `log_level`: passive
642
- - `log_level_replica`: warning
643
- - `log_on_each_node`: True
644
- - `logging_nan_inf_filter`: True
645
- - `save_safetensors`: True
646
- - `save_on_each_node`: False
647
- - `save_only_model`: False
648
- - `restore_callback_states_from_checkpoint`: False
649
- - `no_cuda`: False
650
- - `use_cpu`: False
651
- - `use_mps_device`: False
652
- - `seed`: 42
653
- - `data_seed`: None
654
- - `jit_mode_eval`: False
655
- - `use_ipex`: False
656
- - `bf16`: True
657
- - `fp16`: False
658
- - `fp16_opt_level`: O1
659
- - `half_precision_backend`: auto
660
- - `bf16_full_eval`: False
661
- - `fp16_full_eval`: False
662
- - `tf32`: True
663
- - `local_rank`: 0
664
- - `ddp_backend`: None
665
- - `tpu_num_cores`: None
666
- - `tpu_metrics_debug`: False
667
- - `debug`: []
668
- - `dataloader_drop_last`: True
669
- - `dataloader_num_workers`: 0
670
- - `dataloader_prefetch_factor`: None
671
- - `past_index`: -1
672
- - `disable_tqdm`: False
673
- - `remove_unused_columns`: True
674
- - `label_names`: None
675
- - `load_best_model_at_end`: False
676
- - `ignore_data_skip`: False
677
- - `fsdp`: []
678
- - `fsdp_min_num_params`: 0
679
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
680
- - `fsdp_transformer_layer_cls_to_wrap`: None
681
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
682
- - `deepspeed`: None
683
- - `label_smoothing_factor`: 0.0
684
- - `optim`: adamw_torch_fused
685
- - `optim_args`: None
686
- - `adafactor`: False
687
- - `group_by_length`: False
688
- - `length_column_name`: length
689
- - `ddp_find_unused_parameters`: None
690
- - `ddp_bucket_cap_mb`: None
691
- - `ddp_broadcast_buffers`: False
692
- - `dataloader_pin_memory`: True
693
- - `dataloader_persistent_workers`: False
694
- - `skip_memory_metrics`: True
695
- - `use_legacy_prediction_loop`: False
696
- - `push_to_hub`: False
697
- - `resume_from_checkpoint`: None
698
- - `hub_model_id`: None
699
- - `hub_strategy`: every_save
700
- - `hub_private_repo`: False
701
- - `hub_always_push`: False
702
- - `gradient_checkpointing`: True
703
- - `gradient_checkpointing_kwargs`: {'use_reentrant': False}
704
- - `include_inputs_for_metrics`: False
705
- - `eval_do_concat_batches`: True
706
- - `fp16_backend`: auto
707
- - `push_to_hub_model_id`: None
708
- - `push_to_hub_organization`: None
709
- - `mp_parameters`:
710
- - `auto_find_batch_size`: False
711
- - `full_determinism`: False
712
- - `torchdynamo`: None
713
- - `ray_scope`: last
714
- - `ddp_timeout`: 1800
715
- - `torch_compile`: False
716
- - `torch_compile_backend`: None
717
- - `torch_compile_mode`: None
718
- - `dispatch_batches`: None
719
- - `split_batches`: None
720
- - `include_tokens_per_second`: False
721
- - `include_num_input_tokens_seen`: False
722
- - `neftune_noise_alpha`: None
723
- - `optim_target_modules`: None
724
- - `batch_eval_metrics`: False
725
- - `batch_sampler`: no_duplicates
726
- - `multi_dataset_batch_sampler`: proportional
727
-
728
- </details>
729
-
730
- ### Training Logs
731
- | Epoch | Step | Training Loss | retrival loss | sts loss | reranking loss |
732
- |:------:|:----:|:-------------:|:-------------:|:--------:|:--------------:|
733
- | 0.5222 | 500 | 0.7949 | 0.0187 | 2.6522 | 0.2931 |
734
- | 1.0444 | 1000 | 0.6813 | 0.0139 | 2.5109 | 0.2695 |
735
- | 1.5666 | 1500 | 0.5148 | 0.0118 | 2.5270 | 0.2807 |
736
- | 2.0888 | 2000 | 0.48 | 0.0114 | 2.5418 | 0.2791 |
737
- | 2.6110 | 2500 | 0.3782 | 0.0117 | 2.5740 | 0.2787 |
738
-
739
-
740
- ### Framework Versions
741
- - Python: 3.10.12
742
- - Sentence Transformers: 3.0.1
743
- - Transformers: 4.41.2
744
- - PyTorch: 2.2.0+cu121
745
- - Accelerate: 0.32.1
746
- - Datasets: 2.20.0
747
- - Tokenizers: 0.19.1
748
 
749
  ## Citation
750
 
 
594
  *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
595
  -->
596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597
 
598
  ## Citation
599