FINGU-AI commited on
Commit
42c8103
·
verified ·
1 Parent(s): 3cb6d25

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -180
README.md CHANGED
@@ -1,201 +1,79 @@
1
  ---
2
- library_name: transformers
3
- tags:
4
- - trl
5
- - sft
 
6
  ---
7
 
8
- # Model Card for Model ID
9
 
10
- <!-- Provide a quick summary of what the model is/does. -->
11
 
 
12
 
 
13
 
14
- ## Model Details
 
 
15
 
16
- ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
19
 
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
 
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
 
30
- ### Model Sources [optional]
 
 
 
31
 
32
- <!-- Provide the basic links for the model. -->
 
33
 
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
 
38
- ## Uses
 
 
 
 
 
 
39
 
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
 
42
- ### Direct Use
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
45
 
46
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
47
 
48
- ### Downstream Use [optional]
 
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Contact
200
-
201
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ko
6
+ - ja
7
  ---
8
 
9
+ ## FINGU-AI/QwenllmFi
10
 
11
+ ### Overview
12
 
13
+ The FINGU-AI/QwenllmFi, model offers a specialized curriculum tailored to English, Korean, and Japanese speakers interested in finance, investment, and legal frameworks. It aims to enhance language proficiency while providing insights into global finance markets and regulatory landscapes.
14
 
15
+ ### Key Features
16
 
17
+ - **Global Perspective**: Explores diverse financial markets and regulations across English, Korean, and Japanese contexts.
18
+ - **Language Proficiency**: Enhances language skills in English, Korean, and Japanese for effective communication in finance and legal domains.
19
+ - **Career Advancement**: Equips learners with knowledge and skills for roles in investment banking, corporate finance, asset management, and regulatory compliance.
20
 
21
+ ### Model Information
22
 
23
+ - **Model Name**: FINGU-AI/QwenllmFi
24
+ - **Description**: FINGU-AI/QwenllmFi model trained on various languages, including English, Korean, and Japanese.
25
+ - **Checkpoint**: FINGU-AI/QwenllmFi
26
+ - **Author**:
27
+ - **License**: Apache-2.0
28
 
29
+ ### How to Use
30
 
31
+ To use the FINGU-AI/QwenllmFi model, you can utilize the Hugging Face Transformers library. Here's a Python code snippet demonstrating how to load the model and generate predictions:
 
 
 
 
 
 
32
 
33
+ ```python
34
+ #!pip install 'transformers>=4.39.0'
35
+ #!pip install -U flash-attn
36
+ #!pip install -q -U git+https://github.com/huggingface/accelerate.
37
 
38
+ import torch
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig,TextStreamer
40
 
 
 
 
41
 
42
+ streamer = TextStreamer(tokenizer)
43
+ model_id = 'FINGU-AI/QwenllmFi'
44
+ #config = AutoConfig.from_pretrained(model_id)
45
+ model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="flash_attention_2", torch_dtype= torch.bfloat16,)
46
+ model.to('cuda')
47
+ tokenizer = AutoTokenizer.from_pretrained(model_id,)
48
+ streamer = TextStreamer(tokenizer)
49
 
 
50
 
 
51
 
52
+ messages = [
53
+ {"role": "system","content": " you are as a finance specialist, help the user and provide accurat information."},
54
+ {"role": "user", "content": " what are the best approch to prevent loss?"},
55
+ ]
56
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
57
 
58
+ generation_params = {
59
+ 'max_new_tokens': 1000,
60
+ 'use_cache': True,
61
+ #'prompt_lookup_num_tokens':10,
62
+ 'do_sample': True,
63
+ 'temperature': 0.7,
64
+ 'top_p': 0.9,
65
+ 'top_k': 50,
66
+ #'bos_token_id': tokenizer.bos_token_id,
67
+ 'eos_token_id': tokenizer.eos_token_id,
68
+ }
69
 
70
+ outputs = model.generate(tokenized_chat, **generation_params, streamer=streamer)
71
+ decoded_outputs = tokenizer.batch_decode(outputs)
72
 
73
+ '''
74
+ <|im_start|>user
75
+ what are the best approch to prevent loss? provide some tips and suggestions.<|im_end|>
76
+ <|im_start|>assistant
77
+ To avoid losses, it's essential to maintain discipline, set realistic goals, and adhere to predetermined rules for trading. Diversification is key as it spreads investments across different sectors and asset classes to reduce overall risk. Regularly reviewing and rebalancing positions can also ensure alignment with investment objectives. Additionally, staying informed about market trends and economic indicators can provide opportunities for long-term capital preservation. It's also important to stay patient and avoid emotional decision-making, as emotions often cloud judgment. If you encounter significant losses, consider using stop-loss orders to limit your losses. Staying disciplined and focusing on long-term objectives can help protect your investment portfolio from permanent damage.
78
+ '''
79
+ ```