File size: 9,155 Bytes
23bd7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT Style dataset."""

import numpy as np
import torch

from megatron import (
    get_args,
    get_tokenizer,
    mpu,
    print_rank_0
)
from megatron.data.dataset_utils import (
    get_samples_mapping,
    get_a_and_b_segments,
    truncate_segments,
    create_tokens_and_tokentypes,
    create_masked_lm_predictions
)

class DummyBertDataset(torch.utils.data.Dataset):
    def __init__(self, name, num_samples, max_seq_length):
        self.name = name
        self.num_samples = num_samples
        self.max_seq_length = max_seq_length
        self.np_rng = np.random.RandomState(seed=0)
        # self.token_nps = np_rng.randint(1000, 2000, (self.num_samples, 512))
        # Vocab stuff.
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad

    def __len__(self):
        return self.num_samples

    def __getitem__(self, idx):
        tokens = self.np_rng.randint(1000, 2000, self.max_seq_length)
        masked_position = np.arange(int(tokens.shape[0] * 0.15))
        tokens = tokens.astype(np.int64)
        labels = tokens[masked_position]
        label_np = np.full_like(tokens, -1)
        label_np[masked_position] = labels
        tokens[masked_position] = self.mask_id
        loss_mask_np = np.zeros_like(tokens)
        loss_mask_np[masked_position] = 1
        train_sample = {
            'text': tokens,
            'types': np.zeros_like(tokens),
            'labels': label_np,
            'is_random': 0,
            'loss_mask': loss_mask_np,
            'padding_mask': np.ones_like(tokens),
            'truncated': 0
        }
        return train_sample

class BertDataset(torch.utils.data.Dataset):

    def __init__(self, name, indexed_dataset, data_prefix,
                 num_epochs, max_num_samples, masked_lm_prob,
                 max_seq_length, short_seq_prob, seed, binary_head):

        # Params to store.
        self.name = name
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length
        self.binary_head = binary_head

        # Dataset.
        self.indexed_dataset = indexed_dataset

        # Build the samples mapping.
        self.samples_mapping = get_samples_mapping(self.indexed_dataset,
                                                   data_prefix,
                                                   num_epochs,
                                                   max_num_samples,
                                                   self.max_seq_length - 3, # account for added tokens
                                                   short_seq_prob,
                                                   self.seed,
                                                   self.name,
                                                   self.binary_head)

        # Vocab stuff.
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad

    def __len__(self):
        return self.samples_mapping.shape[0]

    def __getitem__(self, idx):
        start_idx, end_idx, seq_length = self.samples_mapping[idx]
        sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)]
        # Note that this rng state should be numpy and not python since
        # python randint is inclusive whereas the numpy one is exclusive.
        # We % 2**32 since numpy requres the seed to be between 0 and 2**32 - 1
        np_rng = np.random.RandomState(seed=((self.seed + idx) % 2**32))
        return build_training_sample(sample, seq_length,
                                     self.max_seq_length,  # needed for padding
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, np_rng,
                                     self.binary_head)




def build_training_sample(sample,
                          target_seq_length, max_seq_length,
                          vocab_id_list, vocab_id_to_token_dict,
                          cls_id, sep_id, mask_id, pad_id,
                          masked_lm_prob, np_rng, binary_head):
    """Biuld training sample.

    Arguments:
        sample: A list of sentences in which each sentence is a list token ids.
        target_seq_length: Desired sequence length.
        max_seq_length: Maximum length of the sequence. All values are padded to
            this length.
        vocab_id_list: List of vocabulary ids. Used to pick a random id.
        vocab_id_to_token_dict: A dictionary from vocab ids to text tokens.
        cls_id: Start of example id.
        sep_id: Separator id.
        mask_id: Mask token id.
        pad_id: Padding token id.
        masked_lm_prob: Probability to mask tokens.
        np_rng: Random number genenrator. Note that this rng state should be
              numpy and not python since python randint is inclusive for
              the opper bound whereas the numpy one is exclusive.
    """

    if binary_head:
        # We assume that we have at least two sentences in the sample
        assert len(sample) > 1
    assert target_seq_length <= max_seq_length

    # Divide sample into two segments (A and B).
    if binary_head:
        tokens_a, tokens_b, is_next_random = get_a_and_b_segments(sample,
                                                                  np_rng)
    else:
        tokens_a = []
        for j in range(len(sample)):
            tokens_a.extend(sample[j])
        tokens_b = []
        is_next_random = False

    # Truncate to `target_sequence_length`.
    max_num_tokens = target_seq_length
    truncated = truncate_segments(tokens_a, tokens_b, len(tokens_a),
                                  len(tokens_b), max_num_tokens, np_rng)

    # Build tokens and toketypes.
    tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b,
                                                      cls_id, sep_id)

    # Masking.
    max_predictions_per_seq = masked_lm_prob * max_num_tokens
    (tokens, masked_positions, masked_labels, _, _) = create_masked_lm_predictions(
        tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob,
        cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng)

    # Padding.
    tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np \
        = pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                                   masked_labels, pad_id, max_seq_length)

    train_sample = {
        'text': tokens_np,
        'types': tokentypes_np,
        'labels': labels_np,
        'is_random': int(is_next_random),
        'loss_mask': loss_mask_np,
        'padding_mask': padding_mask_np,
        'truncated': int(truncated)}
    return train_sample


def pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                             masked_labels, pad_id, max_seq_length):
    """Pad sequences and convert them to numpy."""

    # Some checks.
    num_tokens = len(tokens)
    padding_length = max_seq_length - num_tokens
    assert padding_length >= 0
    assert len(tokentypes) == num_tokens
    assert len(masked_positions) == len(masked_labels)

    # Tokens and token types.
    filler = [pad_id] * padding_length
    tokens_np = np.array(tokens + filler, dtype=np.int64)
    tokentypes_np = np.array(tokentypes + filler, dtype=np.int64)

    # Padding mask.
    padding_mask_np = np.array([1] * num_tokens + [0] * padding_length,
                               dtype=np.int64)

    # Lables and loss mask.
    labels = [-1] * max_seq_length
    loss_mask = [0] * max_seq_length
    for i in range(len(masked_positions)):
        assert masked_positions[i] < num_tokens
        labels[masked_positions[i]] = masked_labels[i]
        loss_mask[masked_positions[i]] = 1
    labels_np = np.array(labels, dtype=np.int64)
    loss_mask_np = np.array(loss_mask, dtype=np.int64)

    return tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np