File size: 10,349 Bytes
23bd7af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""T5 Style dataset."""
import collections
import numpy as np
import torch
from megatron import get_tokenizer
from megatron.data.dataset_utils import (
create_masked_lm_predictions,
get_samples_mapping
)
class T5Dataset(torch.utils.data.Dataset):
def __init__(self, name, indexed_dataset, data_prefix,
num_epochs, max_num_samples, masked_lm_prob,
max_seq_length, max_seq_length_dec,
short_seq_prob, seed):
# Params to store.
self.name = name
self.seed = seed
self.masked_lm_prob = masked_lm_prob
self.max_seq_length = max_seq_length
self.max_seq_length_dec = max_seq_length_dec
# Dataset.
self.indexed_dataset = indexed_dataset
# Build the samples mapping.
self.samples_mapping = get_samples_mapping(self.indexed_dataset,
data_prefix,
num_epochs,
max_num_samples,
self.max_seq_length - 2, # account for added tokens
short_seq_prob,
self.seed,
self.name,
False)
# Vocab stuff.
tokenizer = get_tokenizer()
self.vocab_id_list = list(tokenizer.inv_vocab.keys())
self.vocab_id_to_token_dict = tokenizer.inv_vocab
self.cls_id = tokenizer.cls
self.sep_id = tokenizer.sep
self.mask_id = tokenizer.mask
self.pad_id = tokenizer.pad
self.bos_id = tokenizer.bos_token_id
self.eos_id = tokenizer.eos_token_id
self.sentinel_tokens = tokenizer.additional_special_tokens_ids
assert len(self.sentinel_tokens) > 0, "Provide the argument --vocab-extra-ids 100 to the script"
def __len__(self):
return self.samples_mapping.shape[0]
def __getitem__(self, idx):
start_index, end_index, seq_length = self.samples_mapping[idx]
sample = []
for index in range(start_index, end_index):
sample.append(self.indexed_dataset[index])
# Note that this rng state should be numpy and not python since
# python randint is inclusive whereas the numpy one is exclusive.
np_rng = np.random.RandomState(seed=(self.seed + idx))
return build_training_sample(sample, seq_length,
self.max_seq_length, # needed for padding
self.max_seq_length_dec,
self.vocab_id_list,
self.vocab_id_to_token_dict,
self.cls_id, self.sep_id,
self.mask_id, self.pad_id,
self.masked_lm_prob, np_rng,
self.bos_id, self.eos_id,
self.sentinel_tokens)
def build_training_sample(sample, target_seq_length,
max_seq_length, max_seq_length_dec,
vocab_id_list, vocab_id_to_token_dict,
cls_id, sep_id, mask_id, pad_id,
masked_lm_prob, np_rng, bos_id=None,
eos_id=None, sentinel_tokens=None):
"""Build training sample.
Arguments:
sample: A list of sentences in which each sentence is a list token ids.
target_seq_length: Desired sequence length.
max_seq_length: Maximum length of the sequence. All values are padded to
this length.
vocab_id_list: List of vocabulary ids. Used to pick a random id.
vocab_id_to_token_dict: A dictionary from vocab ids to text tokens.
cls_id: Start of example id.
sep_id: Separator id.
mask_id: Mask token id.
pad_id: Padding token id.
masked_lm_prob: Probability to mask tokens.
np_rng: Random number genenrator. Note that this rng state should be
numpy and not python since python randint is inclusive for
the opper bound whereas the numpy one is exclusive.
bos_id: start of decoder example id
eos_id: end of generation id
sentinel_tokens: unique value to be substituted for every replaced span
"""
assert target_seq_length <= max_seq_length
# flatten sentences into one list
tokens = [token for sentence in sample for token in sentence]
# Truncate to `target_sequence_length`.
max_num_tokens = target_seq_length
truncated = len(tokens) > max_num_tokens
tokens = tokens[:max_num_tokens]
# Masking.
max_predictions_per_seq = masked_lm_prob * max_num_tokens
(tokens, masked_positions, masked_labels, _, masked_spans) = create_masked_lm_predictions(
tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob,
cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng,
max_ngrams=10, geometric_dist=True, masking_style="t5")
# Padding.
tokens_enc, tokens_dec_in, labels, enc_mask, \
dec_mask, enc_dec_mask, loss_mask \
= pad_and_convert_to_numpy(tokens, masked_positions,
masked_labels, pad_id, max_seq_length,
max_seq_length_dec, masked_spans,
bos_id, eos_id, sentinel_tokens)
train_sample = {
'text_enc': tokens_enc,
'text_dec': tokens_dec_in,
'labels': labels,
'loss_mask': loss_mask,
'truncated': int(truncated),
'enc_mask': enc_mask,
'dec_mask': dec_mask,
'enc_dec_mask': enc_dec_mask,
}
return train_sample
def pad_and_convert_to_numpy(tokens, masked_positions,
masked_labels, pad_id,
max_seq_length, max_seq_length_dec,
masked_spans=None, bos_id=None,
eos_id=None, sentinel_tokens=None):
"""Pad sequences and convert them to numpy."""
sentinel_tokens = collections.deque(sentinel_tokens)
t5_input = []
(t5_decoder_in, t5_decoder_out) = ([bos_id], [])
(start_index, end_index) = (0, None)
for span in masked_spans:
flag = sentinel_tokens.popleft()
# Append the same tokens in decoder input and output
t5_decoder_in.append(flag)
t5_decoder_in.extend(span.label)
t5_decoder_out.append(flag)
t5_decoder_out.extend(span.label)
end_index = span.index[0]
t5_input.extend(tokens[start_index: end_index])
t5_input.append(flag)
# the next start index is the token after the last span token
start_index = span.index[-1] + 1
# Add <eos> token to the t5_decoder_out
t5_decoder_out.append(eos_id)
# Add the remaining tokens to the t5 input
t5_input.extend(tokens[start_index:])
# assert (len(t5_input) - len(masked_spans)) + \
# (len(t5_decoder_in) - (len(masked_spans) + 1)) == len(tokens)
# Some checks.
# Encoder-side padding mask.
num_tokens = len(t5_input)
padding_length = max_seq_length - num_tokens
assert padding_length >= 0
assert len(masked_positions) == len(masked_labels)
# Tokens..
filler = [pad_id] * padding_length
tokens_enc = np.array(t5_input + filler, dtype=np.int64)
# Decoder-side padding mask.
num_tokens_dec = len(t5_decoder_in)
padding_length_dec = max_seq_length_dec - num_tokens_dec
assert padding_length_dec >= 0
filler_dec = [pad_id] * padding_length_dec
tokens_dec_in = np.array(t5_decoder_in + filler_dec, dtype=np.int64)
# Create attention masks
enc_mask = make_attention_mask(tokens_enc, tokens_enc)
enc_dec_mask = make_attention_mask(tokens_dec_in, tokens_enc)
dec_mask = make_attention_mask(tokens_dec_in, tokens_dec_in)
dec_mask = dec_mask * make_history_mask(tokens_dec_in)
# Labels mask.
labels = t5_decoder_out + ([-1] * padding_length_dec)
labels = np.array(labels, dtype=np.int64)
# Loss mask
loss_mask = ([1] * num_tokens_dec) + ([0] * padding_length_dec)
loss_mask = np.array(loss_mask, dtype=np.int64)
return tokens_enc, tokens_dec_in, labels, enc_mask, \
dec_mask, enc_dec_mask, loss_mask
def make_attention_mask(source_block, target_block):
"""
Returns a 2-dimensional (2-D) attention mask
:param source_block: 1-D array
:param target_block: 1-D array
"""
mask = (target_block[None, :] >= 1) * (source_block[:, None] >= 1)
mask = mask.astype(np.int64)
# (source_length, target_length)
return mask
def make_attention_mask_3d(source_block, target_block):
"""
Returns a 3-dimensional (3-D) attention mask
:param source_block: 1-D array
:param target_block: 1-D array
"""
mask = (target_block[:, None, :] >= 1) * (source_block[:, :, None] >= 1)
# (batch, source_length, target_length)
# mask = mask.astype(np.int64)
return mask
def make_history_mask(block):
length = block.shape[0]
arange = np.arange(length)
history_mask = (arange[None, ] <= arange[:, None])
history_mask = history_mask.astype(np.int64)
return history_mask
def make_history_mask_3d(block):
batch, length = block.shape
arange = torch.arange(length, device=block.device)
history_mask = (arange[None, ] <= arange[:, None])[None, ]
history_mask = history_mask.expand(batch, length, length)
return history_mask
|