File size: 25,759 Bytes
23bd7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
/* coding=utf-8
 * Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*This code is copied fron NVIDIA apex:
 *     https://github.com/NVIDIA/apex
 *     with minor changes. */

#include "ATen/ATen.h"
#include "ATen/AccumulateType.h"
#include "ATen/cuda/CUDAContext.h"
#include "ATen/cuda/DeviceUtils.cuh"

#include <cuda.h>
#include <cuda_runtime.h>

#include "type_shim.h"

template<typename U> __device__
void cuWelfordOnlineSum(
  const U curr,
  U& mu,
  U& sigma2,
  U& count)
{
  count = count + U(1);
  U delta = curr - mu;
  U lmean = mu + delta / count;
  mu = lmean;
  U delta2 = curr - lmean;
  sigma2 = sigma2 + delta * delta2;
}

template<typename U> __device__
void cuChanOnlineSum(
  const U muB,
  const U sigma2B,
  const U countB,
  U& mu,
  U& sigma2,
  U& count)
{
  U delta = muB - mu;
  U nA = count;
  U nB = countB;
  count = count + countB;
  U nX = count;
  if (nX > U(0)) {
    nA = nA / nX;
    nB = nB / nX;
    mu = nA*mu + nB*muB;
    sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX;
  } else {
    mu = U(0);
    sigma2 = U(0);
  }
}

template<typename T, typename U> __device__
void cuWelfordMuSigma2(
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const int i1,
  U& mu,
  U& sigma2,
  U* buf) 
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensor is contiguous
  // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
  //
  // compute variance and mean over n2
  U count = U(0);
  mu= U(0);
  sigma2 = U(0);
  if (i1 < n1) {
    // one warp normalizes one n1 index,
    // synchronization is implicit
    // initialize with standard Welford algorithm
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    const T* lvals = vals + i1*n2;
    int l = 4*thrx;
    for (;  l+3 < n2;  l+=4*numx) {
      for (int k = 0;  k < 4;  ++k) {
        U curr = static_cast<U>(lvals[l+k]);
        cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
      }
    }
    for (;  l < n2;  ++l) {
      U curr = static_cast<U>(lvals[l]);
      cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
    }
    // intra-warp reductions
    for (int l = 0;  l <= 4;  ++l) {
      int srcLaneB = (threadIdx.x+(1<<l))&31;
      U muB = WARP_SHFL(mu, srcLaneB);
      U countB = WARP_SHFL(count, srcLaneB);
      U sigma2B = WARP_SHFL(sigma2, srcLaneB);
      cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
    }
    // threadIdx.x == 0 has correct values for each warp
    // inter-warp reductions
    if (blockDim.y > 1) {
      U* ubuf = (U*)buf;
      U* ibuf = (U*)(ubuf + blockDim.y);
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_y = threadIdx.y - offset;
          ubuf[2*wrt_y] = mu;
          ubuf[2*wrt_y+1] = sigma2;
          ibuf[wrt_y] = count;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.x == 0 && threadIdx.y < offset) {
          U muB = ubuf[2*threadIdx.y];
          U sigma2B = ubuf[2*threadIdx.y+1];
          U countB = ibuf[threadIdx.y];
          cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
        }
        __syncthreads();
      }
      // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
      if (threadIdx.x == 0 && threadIdx.y == 0) {
        ubuf[0] = mu;
        ubuf[1] = sigma2;
      }
      __syncthreads();
      mu = ubuf[0];
      sigma2 = ubuf[1]/U(n2);
      // don't care about final value of count, we know count == n2
    } else {
      mu = WARP_SHFL(mu, 0);
      sigma2 = WARP_SHFL(sigma2/U(n2), 0);
    }
  }
}

template<> __device__
void cuWelfordMuSigma2(
  const at::Half* __restrict__ vals,
  const int n1,
  const int n2,
  const int i1,
  float& mu,
  float& sigma2,
  float* buf) 
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensor is contiguous
  // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
  //
  // compute variance and mean over n2
  float count = 0.0f;
  mu= float(0);
  sigma2 = float(0);
  if (i1 < n1) {
    // one warp normalizes one n1 index,
    // synchronization is implicit
    // initialize with standard Welford algorithm
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    const at::Half* lvals = vals + i1*n2;
    int l = 8*thrx;
    if ((((size_t)lvals)&3) != 0) {
      // 16 bit alignment
      // first thread consumes first point
      if (thrx == 0) {
        float curr = static_cast<float>(lvals[0]);
        cuWelfordOnlineSum(curr,mu,sigma2,count);
      }
      ++l;
    }
    // at this point, lvals[l] are 32 bit aligned for all threads.
    for (;  l+7 < n2;  l+=8*numx) {
      for (int k = 0;  k < 8;  k+=2) {
        float2 curr = __half22float2(*((__half2*)(lvals+l+k)));
        cuWelfordOnlineSum(curr.x,mu,sigma2,count);
	cuWelfordOnlineSum(curr.y,mu,sigma2,count);
      }
    }
    for (;  l < n2;  ++l) {
      float curr = static_cast<float>(lvals[l]);
      cuWelfordOnlineSum(curr,mu,sigma2,count);
    }
    // intra-warp reductions
    for (int l = 0;  l <= 4;  ++l) {
      int srcLaneB = (threadIdx.x+(1<<l))&31;
      float muB = WARP_SHFL(mu, srcLaneB);
      float countB = WARP_SHFL(count, srcLaneB);
      float sigma2B = WARP_SHFL(sigma2, srcLaneB);
      cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
    }
    // threadIdx.x == 0 has correct values for each warp
    // inter-warp reductions
    if (blockDim.y > 1) {
      float* ubuf = (float*)buf;
      float* ibuf = (float*)(ubuf + blockDim.y);
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_y = threadIdx.y - offset;
          ubuf[2*wrt_y] = mu;
          ubuf[2*wrt_y+1] = sigma2;
          ibuf[wrt_y] = count;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.x == 0 && threadIdx.y < offset) {
          float muB = ubuf[2*threadIdx.y];
          float sigma2B = ubuf[2*threadIdx.y+1];
          float countB = ibuf[threadIdx.y];
          cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
        }
        __syncthreads();
      }
      // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
      if (threadIdx.x == 0 && threadIdx.y == 0) {
        ubuf[0] = mu;
        ubuf[1] = sigma2;
      }
      __syncthreads();
      mu = ubuf[0];
      sigma2 = ubuf[1]/float(n2);
      // don't care about final value of count, we know count == n2
    } else {
      mu = WARP_SHFL(mu, 0);
      sigma2 = WARP_SHFL(sigma2/float(n2), 0);
    }
  }
}

template<typename U> U rsqrt(U v) {
  return U(1) / sqrt(v);
}
template<> float rsqrt(float v) {
  return rsqrtf(v);
}
template<> double rsqrt(double v) {
  return rsqrt(v);
}

namespace {
// This is the un-specialized struct.  Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
//  template <typename T>
//  struct SharedMemory
//  {
//      // Ensure that we won't compile any un-specialized types
//      __device__ T *getPointer()
//      {
//          extern __device__ void error(void);
//          error();
//          return NULL;
//      }
//  };
// https://github.com/NVIDIA/apex/issues/246
template <typename T>
struct SharedMemory;

template <>
struct SharedMemory <float>
{
    __device__ float *getPointer()
    {
        extern __shared__ float s_float[];
        return s_float;
    }
};

}

template<typename T, typename U, typename V> __global__
void cuApplyLayerNorm(
  V* __restrict__ output_vals,
  U* __restrict__ mean,
  U* __restrict__ invvar,
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const U epsilon,
  const V* __restrict__ gamma,
  const V* __restrict__ beta
  ) 
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensors are contiguous
  //
  for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
    SharedMemory<U> shared;
    U* buf = shared.getPointer();
    U mu,sigma2;
    cuWelfordMuSigma2(vals,n1,n2,i1,mu,sigma2,buf);
    const T* lvals = vals + i1*n2;
    V* ovals = output_vals + i1*n2;
    U c_invvar = rsqrt(sigma2 + epsilon);
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    if (gamma != NULL && beta != NULL) {
      for (int i = thrx;  i < n2;  i+=numx) {
        U curr = static_cast<U>(lvals[i]);
        ovals[i] = gamma[i] * static_cast<V>(c_invvar * (curr - mu)) + beta[i];
      }
    } else {
      for (int i = thrx;  i < n2;  i+=numx) {
        U curr = static_cast<U>(lvals[i]);
        ovals[i] = static_cast<V>(c_invvar * (curr - mu));
      }
    }
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      mean[i1] = mu;
      invvar[i1] = c_invvar;
    }
    __syncthreads();
  }
}

template<typename T, typename U, typename V> __device__
void cuLoadWriteStridedInputs(
    const int i1_block,
    const int thr_load_row_off,
    const int thr_load_col_off,
    const int i2_off,
    const int row_stride,
    U* warp_buf1,
    U* warp_buf2,
    const T* input,
    const V* dout,
    const int i1_end,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar
    )
{
  int i1 = i1_block+thr_load_row_off;
  if (i1 < i1_end) {
    U curr_mean = mean[i1];
    U curr_invvar = invvar[i1];
    for (int k = 0;  k < blockDim.y;  ++k) {
      int i2 = i2_off + k;
      int load_idx = i1*n2+i2;
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
      if (i2<n2) {
        U curr_input = static_cast<U>(input[load_idx]);
	U curr_dout = static_cast<U>(dout[load_idx]);
	warp_buf1[write_idx] = curr_dout;
	warp_buf2[write_idx] = curr_dout * (curr_input - curr_mean) * curr_invvar;
      } else {
        warp_buf1[write_idx] = U(0);
        warp_buf2[write_idx] = U(0);
      }
    }
  } else {
    for (int k = 0;  k < blockDim.y;  ++k) {
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
      warp_buf1[write_idx] = U(0);
      warp_buf2[write_idx] = U(0);
    }
  }
}

template<typename T, typename U, typename V> __device__
void cuLoadAddStridedInputs(
    const int i1_block,
    const int thr_load_row_off,
    const int thr_load_col_off,
    const int i2_off,
    const int row_stride,
    U* warp_buf1,
    U* warp_buf2,
    const T* input,
    const V* dout,
    const int i1_end,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar
    )
{
  int i1 = i1_block+thr_load_row_off;
  if (i1 < i1_end) {
    U curr_mean = mean[i1];
    U curr_invvar = invvar[i1];
    for (int k = 0;  k < blockDim.y;  ++k) {
      int i2 = i2_off + k;
      int load_idx = i1*n2+i2;
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
      if (i2<n2) {
        U curr_input = static_cast<U>(input[load_idx]);
	U curr_dout = static_cast<U>(dout[load_idx]);
	warp_buf1[write_idx] += curr_dout;
	warp_buf2[write_idx] += curr_dout * (curr_input - curr_mean) * curr_invvar;
      }
    }
  }
}

template<typename T, typename U, typename V> __global__
void cuComputePartGradGammaBeta(
    const V* __restrict__ dout,
    const T* __restrict__ input,
    const int n1,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar,
    U epsilon,
    U* part_grad_gamma,
    U* part_grad_beta)
{
    const int numsegs_n1 = (n1+blockDim.y*blockDim.y-1) / (blockDim.y*blockDim.y);
    const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y;
    const int i1_beg = blockIdx.y * segs_per_block * blockDim.y*blockDim.y;
    const int i1_beg_plus_one = (blockIdx.y+1) * segs_per_block * blockDim.y*blockDim.y;
    const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1;
    const int row_stride = blockDim.x+1;
    const int thr_load_col_off = (threadIdx.x*blockDim.y)&(blockDim.x-1);
    const int thr_load_row_off = (threadIdx.x*blockDim.y)/blockDim.x + threadIdx.y*blockDim.y;
    const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off;
    SharedMemory<U> shared;
    U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y * blockDim.y + (blockDim.y - 1)*(blockDim.x/blockDim.y) elements
    U* warp_buf1 = (U*)buf;
    U* warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride;
    // compute partial sums from strided inputs
    // do this to increase number of loads in flight
    cuLoadWriteStridedInputs(i1_beg,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input,dout,i1_end,n2,mean,invvar);
    for (int i1_block = i1_beg+blockDim.y*blockDim.y;  i1_block < i1_end;  i1_block+=blockDim.y*blockDim.y) {
      cuLoadAddStridedInputs(i1_block,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input,dout,i1_end,n2,mean,invvar);
    }
    __syncthreads();
    // inter-warp reductions
    // sum within each warp
    U acc1 = U(0);
    U acc2 = U(0);
    for (int k = 0;  k < blockDim.y;  ++k) {
      int row1 = threadIdx.y + k*blockDim.y;
      int idx1 = row1*row_stride + threadIdx.x;
      acc1 += warp_buf1[idx1];
      acc2 += warp_buf2[idx1];
    }
    warp_buf1[threadIdx.y*row_stride+threadIdx.x] = acc1;
    warp_buf2[threadIdx.y*row_stride+threadIdx.x] = acc2;
    __syncthreads();
    // sum all warps
    for (int offset = blockDim.y/2;  offset > 1;  offset /= 2) {
      if (threadIdx.y < offset) {
        int row1 = threadIdx.y;
	int row2 = threadIdx.y + offset;
	int idx1 = row1*row_stride + threadIdx.x;
	int idx2 = row2*row_stride + threadIdx.x;
	warp_buf1[idx1] += warp_buf1[idx2];
	warp_buf2[idx1] += warp_buf2[idx2];
      }
      __syncthreads();
    }
    int i2 = blockIdx.x * blockDim.x + threadIdx.x;
    if (threadIdx.y == 0 && i2 < n2) {
      int row1 = threadIdx.y;
      int row2 = threadIdx.y + 1;
      int idx1 = row1*row_stride + threadIdx.x;
      int idx2 = row2*row_stride + threadIdx.x;
      part_grad_beta[blockIdx.y*n2+i2] = warp_buf1[idx1] + warp_buf1[idx2];
      part_grad_gamma[blockIdx.y*n2+i2] = warp_buf2[idx1] + warp_buf2[idx2];
    }
}

template<typename U, typename V> __global__
void cuComputeGradGammaBeta(
    const U* part_grad_gamma,
    const U* part_grad_beta,
    const int part_size,
    const int n1,
    const int n2,
    V* grad_gamma,
    V* grad_beta)
{
    // sum partial gradients for gamma and beta
    SharedMemory<U> shared;
    U* buf = shared.getPointer(); 
    int i2 = blockIdx.x * blockDim.x + threadIdx.x;
    if (i2 < n2) {
      // each warp does sequential reductions until reduced part_size is num_warps
      int num_warp_reductions = part_size / blockDim.y;
      U sum_gamma = U(0);
      U sum_beta = U(0);
      const U* part_grad_gamma_ptr = part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
      const U* part_grad_beta_ptr = part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
      for (int warp_offset = 0;  warp_offset < num_warp_reductions;  ++warp_offset) {
        sum_gamma += part_grad_gamma_ptr[warp_offset*n2];
        sum_beta += part_grad_beta_ptr[warp_offset*n2];
      }
      // inter-warp reductions
      const int nbsize3 = blockDim.x * blockDim.y / 2;
      for (int offset = blockDim.y/2;  offset >= 1;  offset /= 2) {
        // top half write to shared memory
        if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
          buf[write_idx] = sum_gamma;
          buf[write_idx+nbsize3] = sum_beta;
        }
        __syncthreads();
        // bottom half sums
        if (threadIdx.y < offset) {
          const int read_idx = threadIdx.y * blockDim.x + threadIdx.x;
          sum_gamma += buf[read_idx];
          sum_beta += buf[read_idx+nbsize3];
        }
        __syncthreads();
      }
      // write out fully summed gradients
      if (threadIdx.y == 0) {
        grad_gamma[i2] = sum_gamma;
        grad_beta[i2] = sum_beta;
      }
    }
}

template<typename T, typename U, typename V> __global__
void cuComputeGradInput(
    const V* __restrict__ dout,
    const T* __restrict__ input,
    const int n1,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar,
    U epsilon,
    const V* gamma,
    T* grad_input)
{
  for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
    const U c_mean = mean[i1];
    const U c_invvar = invvar[i1];
    const T* k_input = input + i1*n2;
    const V* k_dout = dout + i1*n2;
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    if (gamma != NULL) {
      int l = 4*thrx;
      for (;  l+3 < n2;  l+=4*numx) {
        for (int k = 0;  k < 4;  ++k) {
          const U c_h = static_cast<U>(k_input[l+k]);
          const U c_loss = static_cast<U>(k_dout[l+k]);
          sum_loss1 += c_loss * gamma[l+k];
          sum_loss2 += c_loss * gamma[l+k] * (c_h - c_mean) * c_invvar;
        }
      }
      for (;  l < n2;  ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss * gamma[l];
        sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar;
      }
    } else {
      int l = 4*thrx;
      for (;  l+3 < n2;  l+=4*numx) {
        for (int k = 0;  k < 4;  ++k) {
          const U c_h = static_cast<U>(k_input[l+k]);
          const U c_loss = static_cast<U>(k_dout[l+k]);
          sum_loss1 += c_loss;
          sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
        }
      }
      for (;  l < n2;  ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss;
        sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
      }
    }
    // intra-warp reductions
    for (int mask = blockDim.x/2;  mask > 0;  mask /= 2) {
      sum_loss1 += WARP_SHFL_XOR(sum_loss1, mask);
      sum_loss2 += WARP_SHFL_XOR(sum_loss2, mask);
    }
    // inter-warp reductions
    if (blockDim.y > 1) {
      SharedMemory<U> shared;
      U* buf = shared.getPointer(); 
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
          buf[2*wrt_i] = sum_loss1;
          buf[2*wrt_i+1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
          sum_loss1 += buf[2*read_i];
          sum_loss2 += buf[2*read_i+1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
        buf[2*threadIdx.x] = sum_loss1;
        buf[2*threadIdx.x+1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y !=0) {
        sum_loss1 = buf[2*threadIdx.x];
        sum_loss2 = buf[2*threadIdx.x+1];
      } 
    }
    // all threads now have the two sums over l
    U fH = (U)n2;
    U term1 = (U(1) / fH) * c_invvar;
    T* k_grad_input = grad_input + i1*n2;
    if (gamma != NULL) {
      for (int l = thrx;  l < n2;  l+=numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss * gamma[l];
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    } else {
      for (int l = thrx;  l < n2;  l+=numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss;
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    }
    // prevent race where buf is written again before reads are done
    __syncthreads();
  }
}




template<typename T, typename U, typename V> 
void HostApplyLayerNorm(
    V* output,
    U* mean,
    U* invvar,
    const T* input,
    int n1,
    int n2,
    double epsilon,
    const V* gamma,
    const V* beta
    )
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    const dim3 threads(32,4,1);
    const uint64_t maxGridY =
      at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
    int nshared = 
        threads.y > 1 ? 
	    threads.y*sizeof(U)+(threads.y/2)*sizeof(U) : 
	    0;
    cuApplyLayerNorm<<<blocks, threads, nshared, stream>>>(
		    output,
		    mean,
		    invvar,
		    input,
		    n1,n2,
		    U(epsilon),
            gamma,beta);
}


void cuda_layer_norm(
    at::Tensor* output,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon)
{
    using namespace at;
    DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
        input->scalar_type(), output->scalar_type(), "cuda_layer_norm_kernel",
        HostApplyLayerNorm(
	    output->DATA_PTR<scalar_t_out>(),
	    mean->DATA_PTR<float>(),
	    invvar->DATA_PTR<float>(),
	    input->DATA_PTR<scalar_t_in>(),
	    n1,n2,
	    epsilon,
	    gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
	    beta != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL);
      )
}


template<typename T, typename U, typename V>
void HostLayerNormGradient(
    const V* dout,
    const U* mean,
    const U* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    const V* gamma,
    const V* beta,
    double epsilon,
    T* grad_input,
    V* grad_gamma,
    V* grad_beta
    )
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    if (gamma != NULL && beta != NULL) {
      // compute grad_gamma(j) and grad_beta(j)
      const int part_size = 16;
      const dim3 threads2(32,4,1);
      const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
      const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y *
	(threads2.x + 1);
      const int nshared2_b = threads2.x * threads2.y * sizeof(U);
      const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
      at::Tensor part_grad_gamma = at::empty(
	  {part_size,n2}, input->options().dtype(at::ScalarType::Float));
      at::Tensor part_grad_beta = at::empty_like(part_grad_gamma);
      cuComputePartGradGammaBeta<<<blocks2, threads2, nshared2, stream>>>(
		      dout,
		      input->DATA_PTR<T>(),
		      n1,n2,
		      mean,
		      invvar,
		      U(epsilon),
		      part_grad_gamma.DATA_PTR<U>(),
		      part_grad_beta.DATA_PTR<U>());

      const dim3 threads3(32,8,1);
      const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
      const int nshared3 = threads3.x * threads3.y * sizeof(U);
      cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
		      part_grad_gamma.DATA_PTR<U>(),
		      part_grad_beta.DATA_PTR<U>(),
		      part_size,
		      n1,n2,
		      grad_gamma,
		      grad_beta);
    }

    // compute grad_input
    const uint64_t maxGridY =
      at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
    const dim3 threads1(32,4,1);
    int nshared =
	    threads1.y > 1 ?
	    threads1.y*threads1.x*sizeof(U) :
	    0;
    cuComputeGradInput<<<blocks1, threads1, nshared, stream>>>(
            dout,
            input->DATA_PTR<T>(),
            n1,n2,
            mean,
            invvar,
            U(epsilon),
            gamma,
            grad_input);
}


void cuda_layer_norm_gradient(
    at::Tensor* dout,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon,
    at::Tensor* grad_input,
    at::Tensor* grad_gamma,
    at::Tensor* grad_beta)
{
    using namespace at;
    DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
        input->scalar_type(), gamma->scalar_type(),
	"cuda_layer_norm_gradient_kernel",
        HostLayerNormGradient(
	    dout->DATA_PTR<scalar_t_out>(),
	    mean->DATA_PTR<float>(),
	    invvar->DATA_PTR<float>(),
	    input,
	    n1,n2,
            // TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
            // if gamma Tensor is NULL on input.
	    gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
	    gamma != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL,
	    epsilon,
	    grad_input->DATA_PTR<scalar_t_in>(),
	    gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
	    gamma != NULL ? grad_beta->DATA_PTR<scalar_t_out>() : NULL);
      )
}