File size: 9,750 Bytes
23bd7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

import torch

from megatron import get_args
from megatron import mpu
from megatron.model.enums import AttnMaskType
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
from megatron.model import LayerNorm
from megatron.model.utils import openai_gelu, erf_gelu
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
from .module import MegatronModule

def bert_extended_attention_mask(attention_mask):
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)

    # Convert attention mask to binary:
    extended_attention_mask = (extended_attention_mask < 0.5)

    return extended_attention_mask

def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
        parallel_output: whether output logits being distributed or not.
    """

    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

        args = get_args()

        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        mpu.set_tensor_model_parallel_attributes(self.bias, True, 0, 1)
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        setattr(self.dense.weight, 'sequence_parallel', args.sequence_parallel)
        setattr(self.dense.bias, 'sequence_parallel', args.sequence_parallel)

        self.layernorm = LayerNorm(hidden_size,
                                   eps=layernorm_epsilon,
                                   sequence_parallel=args.sequence_parallel)
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
        elif args.onnx_safe:
            self.gelu = erf_gelu

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.gelu(hidden_states)
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


def post_language_model_processing(lm_output, pooled_output,
                                   lm_head, binary_head,
                                   lm_labels,
                                   logit_weights,
                                   fp16_lm_cross_entropy):
    # Output.
    lm_logits = lm_head(
        lm_output, logit_weights)
    binary_logits = None
    if binary_head is not None:
        binary_logits = binary_head(pooled_output)
    
    if lm_labels is None:
        # [s b h] => [b s h]
        return lm_logits.transpose(0,1).contiguous(), binary_logits
    else:
        # [b s] => [s b]
        lm_labels = lm_labels.transpose(0,1).contiguous()
        # lm_logits : [s, b, h] and lm_labels: [s, b]
        if fp16_lm_cross_entropy:
            assert lm_logits.dtype == torch.half
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels)
        else:
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(),
                                                       lm_labels)
        # [s, b] => [b s]
        lm_loss = lm_loss.transpose(0,1).contiguous()
        return lm_loss, binary_logits


class BertModel(MegatronModule):
    """Bert Language model."""

    def __init__(self,
                 num_tokentypes=2,
                 add_binary_head=True,
                 parallel_output=True,
                 pre_process=True,
                 post_process=True):
        super(BertModel, self).__init__()
        args = get_args()

        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
        self.add_binary_head = add_binary_head
        self.parallel_output = parallel_output
        self.pre_process = pre_process
        self.post_process = post_process

        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)

        self.language_model, self._language_model_key = get_language_model(
            num_tokentypes=num_tokentypes,
            add_pooler=self.add_binary_head,
            encoder_attn_mask_type=AttnMaskType.padding,
            init_method=init_method,
            scaled_init_method=scaled_init_method,
            pre_process=self.pre_process,
            post_process=self.post_process)

        self.initialize_word_embeddings(init_method_normal)
        if self.post_process:
            self.lm_head = BertLMHead(
                self.word_embeddings_weight().size(0),
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
            self._lm_head_key = 'lm_head'
            self.binary_head = None
            if self.add_binary_head:
                self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                    init_method)
                self._binary_head_key = 'binary_head'

    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        self.language_model.set_input_tensor(input_tensor)

    def forward(self, bert_model_input, attention_mask,
                tokentype_ids=None, lm_labels=None):

        extended_attention_mask = bert_extended_attention_mask(attention_mask)
        input_ids = bert_model_input
        position_ids = bert_position_ids(input_ids)

        lm_output = self.language_model(
            input_ids,
            position_ids,
            extended_attention_mask,
            tokentype_ids=tokentype_ids
        )
        if self.post_process and self.add_binary_head:
            lm_output, pooled_output = lm_output
        else:
            pooled_output = None

        if self.post_process:
            return post_language_model_processing(lm_output, pooled_output,
                                                  self.lm_head, self.binary_head,
                                                  lm_labels,
                                                  self.word_embeddings_weight(),
                                                  self.fp16_lm_cross_entropy)
        else:
            return lm_output


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
            destination, prefix, keep_vars)
        if self.post_process:
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
        if self.post_process and self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
        # Save word_embeddings.
        if self.post_process and not self.pre_process:
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
        if self.post_process:
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
        if self.post_process and self.add_binary_head:
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
        # Load word_embeddings.
        if self.post_process and not self.pre_process:
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)