File size: 9,277 Bytes
23bd7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Vision Transformer(VIT) model."""

import math
import einops
import torch
import apex
import torch.nn.functional as F
from megatron import get_args
from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import (
    get_linear_layer,
    init_method_normal,
    scaled_init_method_normal,
)
from megatron.model.module import MegatronModule

CLASS_TOKEN_LENGTH = 8

class VitMlpHead(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """

    def __init__(self, hidden_size, num_classes):
        super(VitMlpHead, self).__init__()
        self.dense_in = torch.nn.Linear(hidden_size, hidden_size)
        self.relu = torch.nn.ReLU()
        self.dense_out = torch.nn.Linear(hidden_size, num_classes)
        torch.nn.init.constant_(self.dense_out.bias, -10)

    def forward(self, hidden_states):
        # hidden_states: [b, 1, h]
        # sequence_index: index of the token to pool.
        dense_in_result = self.dense_in(hidden_states)
        tanh_result = torch.tanh(dense_in_result)
        dense_out_result = self.dense_out(tanh_result)
        return dense_out_result


def isPerfectSquare(x):
    if(x >= 0):
        sr = math.sqrt(x)
        return (int(sr) * int(sr) == x)
    return False


def twod_interpolate_position_embeddings_hook(
    state_dict,
    prefix,
    local_metadata,
    strict,
    missing_keys,
    unexpected_keys,
    error_msgs,
):

    args = get_args()
    num_patches_per_dim_h = args.img_h // args.patch_dim
    num_patches_per_dim_w = args.img_w // args.patch_dim
    num_patches = num_patches_per_dim_h * num_patches_per_dim_w
    hidden_size = args.hidden_size

    key = prefix + "weight"

    assert key in state_dict
    if key in state_dict:
        input_param = state_dict[key]

        input_seq_len = input_param.shape[0]
        assert(isPerfectSquare(input_seq_len) or isPerfectSquare(input_seq_len - CLASS_TOKEN_LENGTH))
        input_has_class_token = not isPerfectSquare(input_seq_len)
        num_tok_input = input_seq_len - CLASS_TOKEN_LENGTH if input_has_class_token else input_seq_len
        num_tok_output = num_patches
        output_has_class_token = args.class_token_present

        # update input_param and load it to state_dict[key]
        if input_has_class_token:
            input_param_tok = input_param[:CLASS_TOKEN_LENGTH, :]
            input_param_grid = input_param[CLASS_TOKEN_LENGTH:, :]
        else:
            input_param_tok = torch.zeros(CLASS_TOKEN_LENGTH, hidden_size)
            input_param_grid = input_param

        assert input_param.shape[1] == hidden_size

        if num_tok_input != num_tok_output:

            gs_input = int(math.sqrt(num_tok_input))
            gs_new = (num_patches_per_dim_h, num_patches_per_dim_w)

            input_param_grid = input_param_grid.transpose(0, 1).contiguous()
            input_param_grid = input_param_grid.reshape(
                (1, -1, gs_input, gs_input)
            )
            input_param_grid = input_param_grid.float()
            scale_factor = (gs_new[0] / gs_input, gs_new[1] / gs_input)

            input_param_grid = F.interpolate(
                input_param_grid, scale_factor=scale_factor, mode="bilinear"
            )

            input_param_grid = input_param_grid.half()
            input_param_grid = input_param_grid.reshape((-1, num_tok_output))
            input_param_grid = input_param_grid.transpose(0, 1).contiguous()

            assert input_param_grid.shape[1] == hidden_size

        input_param = input_param_grid
        assert (
            input_param.shape[0] == num_tok_output
            and input_param.shape[1] == hidden_size
        )

        if output_has_class_token:
            input_param = torch.cat((input_param_tok, input_param), dim=0)

        state_dict[key] = input_param


class VitBackbone(MegatronModule):
    """Vision Transformer Model."""

    def __init__(self,
                 pre_process=True,
                 post_process=True,
                 class_token=True,
                 single_token_output=False,
                 post_layer_norm=True,
                 drop_path_rate=0.0):
        super(VitBackbone, self).__init__(share_word_embeddings=False)
        args = get_args()

        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
        if args.init_method_xavier_uniform:
            self.init_method = torch.nn.init.xavier_uniform_
            self.scaled_init_method = torch.nn.init.xavier_uniform_
        else:
            self.init_method = init_method_normal(args.init_method_std)
            self.scaled_init_method = scaled_init_method_normal(
                args.init_method_std, args.num_layers
            )

        self.pre_process = pre_process
        self.post_process = post_process
        self.class_token = class_token
        self.post_layer_norm = post_layer_norm
        self.hidden_size = args.hidden_size
        self.patch_dim = args.patch_dim
        self.img_h = args.img_h
        self.img_w = args.img_w
        self.micro_batch_size = args.micro_batch_size
        self.single_token_output = single_token_output
        self.drop_path_rate = drop_path_rate

        assert self.img_h % self.patch_dim == 0
        assert self.img_w % self.patch_dim == 0
        self.num_patches_per_dim_h = self.img_h // self.patch_dim
        self.num_patches_per_dim_w = self.img_w // self.patch_dim
        self.num_patches = self.num_patches_per_dim_h * self.num_patches_per_dim_w
        self.seq_length = self.num_patches + (CLASS_TOKEN_LENGTH if self.class_token else 0)
        self.flatten_dim = self.patch_dim * self.patch_dim * args.num_channels
        self.input_tensor = None
        self.position_ids = None

        if self.pre_process:
            # cls_token
            if self.class_token:
                self.cls_token = torch.nn.Parameter(
                    torch.randn(1, CLASS_TOKEN_LENGTH, self.hidden_size)
                )
                torch.nn.init.zeros_(self.cls_token)
            self.position_ids = torch.arange(self.seq_length).expand(1, -1).cuda()
            
            # Linear encoder
            self.linear_encoder = torch.nn.Linear(
                self.flatten_dim, self.hidden_size
            )

            # embedding
            self.position_embeddings = torch.nn.Embedding(
                self.seq_length, self.hidden_size
            )
            init_method_normal(args.init_method_std)(
                self.position_embeddings.weight
            )

            args.class_token_present = self.class_token
            self.position_embeddings._register_load_state_dict_pre_hook(
                twod_interpolate_position_embeddings_hook
            )

            self.embedding_dropout = torch.nn.Dropout(args.hidden_dropout)

        # Transformer
        self.transformer = ParallelTransformer(
            self.init_method,
            self.scaled_init_method,
            pre_process=self.pre_process,
            post_process=self.post_process,
            post_layer_norm=self.post_layer_norm,
            drop_path_rate=self.drop_path_rate
        )

    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        self.transformer.set_input_tensor(input_tensor)

    def forward(self, input):

        if self.pre_process:
            rearranged_input = einops.rearrange(
                input,
                "b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
                p1=self.patch_dim,
                p2=self.patch_dim,
            )

            assert rearranged_input.dtype == torch.half
            encoder_output = self.linear_encoder(rearranged_input)

            concatenated_tokens = encoder_output
            if self.class_token:
                cls_tokens = self.cls_token.expand(encoder_output.shape[0], -1, -1)
                concatenated_tokens = torch.cat((cls_tokens, encoder_output), dim=1)

            token_embeddings = concatenated_tokens + \
                    self.position_embeddings(self.position_ids[:, :concatenated_tokens.shape[1]])
            hidden_states = self.embedding_dropout(token_embeddings)
        else:
            hidden_states = input

        hidden_states = self.transformer(hidden_states, None)

        if self.single_token_output:
            hidden_states = hidden_states[:,0,:]

        return hidden_states