File size: 8,648 Bytes
23bd7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Inference API."""


import torch

from megatron import mpu
from .communication import broadcast_float_list
from .generation import (
        generate_tokens_probs_and_return_on_first_stage,
        score_and_return_on_first_stage,
        beam_search_and_return_on_first_stage)
from .tokenization import (
    tokenize_prompts,
    detokenize_generations)

def generate_and_post_process(model,
                              prompts=None,
                              tokens_to_generate=0,
                              return_output_log_probs=False,
                              top_k_sampling=0,
                              top_p_sampling=0.0,
                              top_p_decay=0.0,
                              top_p_bound=0.0,
                              temperature=1.0,
                              add_BOS=False,
                              use_eod_token_for_early_termination=True,
                              stop_on_double_eol=False,
                              stop_on_eol=False,
                              random_seed=-1):
    """Run inference and post-process outputs, i.e., detokenize,
    move to cpu and convert to list."""

    # Main inference.
    tokens, lengths, output_log_probs = generate(
        model,
        prompts=prompts,
        tokens_to_generate=tokens_to_generate,
        return_output_log_probs=return_output_log_probs,
        top_k_sampling=top_k_sampling,
        top_p_sampling=top_p_sampling,
        top_p_decay=top_p_decay,
        top_p_bound=top_p_bound,
        temperature=temperature,
        add_BOS=add_BOS,
        use_eod_token_for_early_termination=use_eod_token_for_early_termination,
        stop_on_double_eol=stop_on_double_eol,
        stop_on_eol=stop_on_eol,
        random_seed=random_seed)

    # Only post-process on first stage.
    if mpu.is_pipeline_first_stage():
        tokens, prompts_plus_generations, prompts_plus_generations_segments = \
            detokenize_generations(tokens, lengths, True)

        if return_output_log_probs:
            output_log_probs = output_log_probs.cpu().numpy().tolist()
            for i, (prob, seg) in enumerate(zip(output_log_probs, prompts_plus_generations_segments)):
                output_log_probs[i] = prob[:len(seg)-1]

        return prompts_plus_generations, prompts_plus_generations_segments, \
            output_log_probs, tokens

    return None

def generate(model,
             prompts=None,
             tokens_to_generate=0,
             return_output_log_probs=False,
             top_k_sampling=0,
             top_p_sampling=0.0,
             top_p_decay=0.0,
             top_p_bound=0.0,
             temperature=1.0,
             add_BOS=False,
             use_eod_token_for_early_termination=True,
             stop_on_double_eol=False,
             stop_on_eol=False,
             random_seed=-1):
    """Given prompts and input parameters, run inference and return:
       tokens: prompts plus the generated tokens.
       lengths: length of the prompt + generations. Note that we can
           discard tokens in the tokens tensor that are after the
           corresponding length.
       output_log_probs: log probs of the tokens.
    """

    # Make sure input params are avaialble to all ranks.
    values = [tokens_to_generate,
              return_output_log_probs,
              top_k_sampling, top_p_sampling, top_p_decay, top_p_bound,
              temperature, add_BOS, use_eod_token_for_early_termination,
              stop_on_double_eol,
              stop_on_eol,
              random_seed]
    values_float_tensor = broadcast_float_list(12, float_list=values)
    tokens_to_generate = int(values_float_tensor[0].item())
    return_output_log_probs = bool(values_float_tensor[1].item())
    top_k_sampling = int(values_float_tensor[2].item())
    top_p_sampling = values_float_tensor[3].item()
    top_p_decay = values_float_tensor[4].item()
    top_p_bound = values_float_tensor[5].item()
    temperature = values_float_tensor[6].item()
    add_BOS = bool(values_float_tensor[7].item())
    use_eod_token_for_early_termination = bool(values_float_tensor[8].item())
    stop_on_double_eol = bool(values_float_tensor[9].item())
    stop_on_eol = bool(values_float_tensor[10].item())
    random_seed = int(values_float_tensor[11].item())

    if random_seed != -1:
        torch.random.manual_seed(random_seed)

    # Tokenize prompts and get the batch.
    # Note that these tensors are broadcaseted to all ranks.
    if torch.distributed.get_rank() == 0:
        assert prompts is not None
    
    context_tokens_tensor, context_length_tensor = tokenize_prompts(
        prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)

    if tokens_to_generate == 0:
        return score_and_return_on_first_stage(
            model, context_tokens_tensor, context_length_tensor)
    
    # Main inference function.
    # Note that the outputs are available on the first stage.
    return generate_tokens_probs_and_return_on_first_stage(
        model, context_tokens_tensor, context_length_tensor,
        return_output_log_probs=return_output_log_probs,
        top_k=top_k_sampling,
        top_p=top_p_sampling,
        top_p_decay=top_p_decay,
        top_p_bound=top_p_bound,
        temperature=temperature,
        use_eod_token_for_early_termination=use_eod_token_for_early_termination,
        stop_on_double_eol=stop_on_double_eol,
        stop_on_eol=stop_on_eol)

def beam_search_and_post_process(model,
                                 prompts=None,
                                 tokens_to_generate=0,
                                 beam_size=0,
                                 add_BOS=False,
                                 stop_token=50256,
                                 num_return_gen=1,
                                 length_penalty=1):
    """Run beam search and post-process outputs, i.e., detokenize,
    move to cpu and convert to list."""

    # Main inference.
    tokens, scores = beam_search(model,
                                 prompts=prompts,
                                 tokens_to_generate=tokens_to_generate,
                                 beam_size=beam_size,
                                 add_BOS=add_BOS,
                                 stop_token=stop_token,
                                 num_return_gen=num_return_gen,
                                 length_penalty=length_penalty)
    # Only post-process on first stage.
    if mpu.is_pipeline_first_stage():
        lengths = tokens.size(1)*torch.ones(beam_size, dtype=torch.int64, device=torch.cuda.current_device()) 
        tokens, prompts_plus_generations, prompts_plus_generations_segments = detokenize_generations(tokens, lengths, True)
        scores = scores.cpu().numpy().tolist()
        return prompts_plus_generations, prompts_plus_generations_segments, scores

    return None

def beam_search(model, prompts=None, tokens_to_generate=0, beam_size=0, add_BOS=False, stop_token=50256, num_return_gen=1, length_penalty=1):
    # Make sure input params are avaialble to all ranks.
    values = [tokens_to_generate,
              beam_size,
              add_BOS,
              stop_token,
              num_return_gen,
              length_penalty]
    values_float_tensor = broadcast_float_list(6, float_list=values)
    tokens_to_generate = int(values_float_tensor[0].item())
    beam_size = int(values_float_tensor[1].item())
    add_BOS = bool(values_float_tensor[2].item())
    stop_token = int(values_float_tensor[3].item())
    num_return_gen = int(values_float_tensor[4].item())
    length_penalty = values_float_tensor[5].item()

    context_tokens_tensor, context_length_tensor = tokenize_prompts(
        prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
    
    return beam_search_and_return_on_first_stage(model, context_tokens_tensor, context_length_tensor, 
            beam_size, stop_token=stop_token, num_return_gen=num_return_gen, length_penalty=length_penalty)