File size: 8,556 Bytes
23bd7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Forward step utilities."""

from collections.abc import Iterable

import torch

from megatron import (
    get_args,
    mpu)
from .communication import (
    send_to_next_pipeline_rank,
    recv_from_prev_pipeline_rank_)



class InferenceParams:
    """Inference parameters that are passed to the main model in order
    to efficienly calculate and store the context during inference."""

    def __init__(self, max_batch_size, max_sequence_len):
        """Note that offsets are set to zero and we always set the
        flag to allocate memory. After the first call, make sure to
        set this flag to False."""
        self.max_sequence_len = max_sequence_len
        self.max_batch_size = max_batch_size
        self.sequence_len_offset = 0
        self.batch_size_offset = 0
        self.key_value_memory_dict = {}

    def swap_key_value_dict(self, batch_idx):
        "swap between batches"
        if len(self.key_value_memory_dict) == 0:
            raise ValueError("should not swap when dict in empty")
        
        for layer_number in self.key_value_memory_dict.keys():
            inference_key_memory, inference_value_memory = self.key_value_memory_dict[layer_number]
            assert len(batch_idx) == inference_key_memory.shape[1] ## make sure batch size is the same
            new_inference_key_memory = inference_key_memory[:, batch_idx]
            new_inference_value_memory = inference_value_memory[:, batch_idx]
            self.key_value_memory_dict[layer_number] = (
                    new_inference_key_memory, new_inference_value_memory)

class ForwardStep:
    """Forward step function with all the communications.
    We use a class here to hide the inference parameters
    from the outside caller."""

    def __init__(self, model, max_batch_size, max_sequence_len):
        """Set values so we don't need to do it multiple times."""
        # Make sure model is in eval mode.
        assert not isinstance(model, Iterable), \
            'interleaving schedule is not supported for inference'
        model.eval()
        self.model = model
        # Initialize inference parameters.
        self.inference_params = InferenceParams(max_batch_size,
                                                max_sequence_len)
        # Pipelining arguments.
        args = get_args()
        self.pipeline_size_larger_than_one = (
            args.pipeline_model_parallel_size > 1)
        # Threshold of pipelining.
        self.pipelining_batch_x_seqlen = \
            args.inference_batch_times_seqlen_threshold


    def __call__(self, tokens, position_ids, attention_mask):
        """Invocation of the forward methods. Note that self.inference_params
        is being modified by the forward step."""
        # Pipelining case.
        if self.pipeline_size_larger_than_one:
            current_batch_x_seqlen = tokens.size(0) * tokens.size(1)
            if current_batch_x_seqlen >= self.pipelining_batch_x_seqlen:
                micro_batch_size = \
                    max(1, self.pipelining_batch_x_seqlen // tokens.size(1))
                return _with_pipelining_forward_step(self.model,
                                                     tokens,
                                                     position_ids,
                                                     attention_mask,
                                                     self.inference_params,
                                                     micro_batch_size)

        return _no_pipelining_forward_step(self.model,
                                           tokens,
                                           position_ids,
                                           attention_mask,
                                           self.inference_params)



def _get_recv_buffer_dtype(args):
    """Receive happens between the layers."""
    if args.fp32_residual_connection:
        return torch.float
    return args.params_dtype



def _allocate_recv_buffer(batch_size, sequence_length):
    """Receive happens between the layers with size [s, b, h]."""
    if mpu.is_pipeline_first_stage():
        return None
    args = get_args()
    recv_size = (sequence_length, batch_size, args.hidden_size)
    return torch.empty(recv_size,
                       dtype=_get_recv_buffer_dtype(args),
                       device=torch.cuda.current_device())



def _forward_step_helper(model, tokens, position_ids, attention_mask,
                         inference_params, recv_buffer=None):
    """Single forward step. Update the allocate memory flag so
    only the first time the memory is allocated."""
    batch_size = tokens.size(0)
    sequence_length = tokens.size(1)
    if recv_buffer is None:
        recv_buffer = _allocate_recv_buffer(batch_size, sequence_length)

    # Receive from previous stage.
    recv_from_prev_pipeline_rank_(recv_buffer)

    # Forward pass through the model.
    model.set_input_tensor(recv_buffer)
    output_tensor = model(tokens, position_ids, attention_mask,
                          inference_params=inference_params)

    # Send output to the next stage.
    send_to_next_pipeline_rank(output_tensor)

    return output_tensor



def _no_pipelining_forward_step(model, tokens, position_ids, attention_mask,
                                inference_params, recv_buffer=None):
    """If recv_buffer is none, we will allocate one on the fly."""
    # Run a simple forward pass.
    output_tensor = _forward_step_helper(model, tokens, position_ids,
                                         attention_mask, inference_params,
                                         recv_buffer=recv_buffer)
    # Update the sequence length offset.
    inference_params.sequence_len_offset += tokens.size(1)

    logits = None
    if mpu.is_pipeline_last_stage():
        logits = output_tensor

    return logits



def _with_pipelining_forward_step(model, tokens, position_ids, attention_mask,
                                  inference_params, micro_batch_size):
    """No interleaving is supported."""
    sequence_length = tokens.size(1)
    batch_size = tokens.size(0)

    # Divide the batch dimension into micro batches.
    num_micro_batches, last_chunk = divmod(batch_size,
                                           micro_batch_size)
    if last_chunk > 0:
        num_micro_batches += 1

    # Preallocate memory for output logits.
    logits = None
    if mpu.is_pipeline_last_stage():
        args = get_args()
        logits = torch.empty(
            (batch_size, sequence_length, args.padded_vocab_size),
            dtype=torch.float32, device=torch.cuda.current_device())

    # Preallocate recv buffer.
    recv_buffer = _allocate_recv_buffer(micro_batch_size, sequence_length)

    for micro_batch_index in range(num_micro_batches):
        # Slice among the batch dimenion.
        start = micro_batch_index * micro_batch_size
        end = min(start + micro_batch_size, batch_size)
        this_micro_batch_size = end - start
        tokens2use = tokens[start:end, ...]
        position_ids2use = position_ids[start:end, ...]

        # Run a simple forward pass.
        if this_micro_batch_size != micro_batch_size:
            recv_buffer = None
        output = _forward_step_helper(model, tokens2use, position_ids2use,
                                      attention_mask, inference_params,
                                      recv_buffer=recv_buffer)

        # Adjust the batch size offset to account for the micro-batch.
        inference_params.batch_size_offset += this_micro_batch_size

        # Copy logits.
        if mpu.is_pipeline_last_stage():
            logits[start:end, ...] = output

    # Once we are done with all the micro-batches, we can
    # adjust the sequence length offset.
    inference_params.sequence_len_offset += sequence_length
    # and reset the batch size offset
    inference_params.batch_size_offset = 0

    return logits