File size: 23,951 Bytes
c2c125c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Preprocessing for Wizard of Wikipedia and Wizard of Internet datasets"""
import torch
import argparse
from nltk import word_tokenize
from tqdm import tqdm
import numpy as np
import json
def get_args():
parser = argparse.ArgumentParser(description="Preprocessing")
parser.add_argument("--func", type=str, default=None,
help="choose to run which function")
parser.add_argument("--raw_file", type=str, default=None,
help="path of the input file")
parser.add_argument("--processed_file", type=str, default=None,
help="path of the output file")
parser.add_argument("--knwl_ref_file", type=str, default=None,
help="path of the knowledge reference file")
parser.add_argument("--resp_ref_file", type=str, default=None,
help="path of the knowledge reference file")
parser.add_argument("--knwl_gen_file", type=str, default=None,
help="path of the generated knowledge file")
parser.add_argument("--test_file", type=str, default=None,
help="path of the test file")
parser.add_argument("--train_file", type=str, default=None,
help="path of the train file")
parser.add_argument("--model_file", type=str, default=None,
help="path of the model file")
parser.add_argument("--data_type", type=str, default=None,
help="data types, choose one out of three types: \
wow_seen, wow_unseen, and woi")
parser.add_argument("--seed", type=int, default=1234,
help="random seed")
args = parser.parse_args()
return args
def process_wow_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file):
"""
This is a function used for processing the wizard of wikipedia (wow) dataset
Expected processed format:
topic \t dialogue context \t golden knowledge \t golden response
"""
# loading the raw data
print("> Loading data from %s" % raw_file)
with open(raw_file, "r") as fr:
dialog_data = json.load(fr)
print("> Processing data ...")
fproc = open(processed_file, "w")
fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None
fresp = open(resp_ref_file, "w") if resp_ref_file else None
for i, sample in enumerate(tqdm(dialog_data)):
# get all the dialog data for a single dialog sample
dialog = sample["dialog"]
turn_list = [] # collect the dialog history
# processing for each single dialog sample
for j, turn in enumerate(dialog):
# text of each turn
text = turn["text"]
if not (text.endswith("?") or text.endswith(".") or text.endswith("!")):
text = text + "."
if j == 0:
# first turn
turn_list.append(text)
continue
speaker = turn["speaker"].lower()
if "wizard" in speaker:
checked_sentence = list(turn["checked_sentence"].values()) # knowledge
checked_passage = list(turn["checked_passage"].values()) # topic
assert len(checked_sentence) <= 1
# get the ground truth knowledge
if len(checked_sentence) > 0:
checked_sentence = checked_sentence[0]
else:
checked_sentence = "no_passages_used"
if len(checked_passage) == 1:
checked_passage = checked_passage[0]
else:
checked_passage = "no_passages_used"
# get the topic
if checked_passage != "no_passages_used":
topic = checked_passage
else:
topic = sample["chosen_topic"]
dialog_context = " [SEP] ".join(turn_list)
knowledge = checked_sentence
response = text
# add the response into the dialog history
turn_list.append(response)
# write to the output files
fproc.write(topic + "\t" + dialog_context + "\t" + \
knowledge + "\t" + response + "\n")
if fknwl:
fknwl.write(knowledge + "\n")
if fresp:
# tokenize for evaluation
response = " ".join(word_tokenize(response))
fresp.write(response + "\n")
else:
assert "apprentice" in speaker
turn_list.append(text)
fproc.close()
if fknwl:
fknwl.close()
if fresp:
fresp.close()
def process_woi_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file):
"""
This is a function used for processing the wizard of internet (woi) dataset
Expected processed format:
topic \t dialogue context \t golden knowledge \t golden response
"""
print("> Processing %s" % raw_file)
fproc = open(processed_file, "w")
fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None
fresp = open(resp_ref_file, "w") if resp_ref_file else None
with open(raw_file, "r") as fr:
for i, line in tqdm(enumerate(fr)):
# read line by line, each line uses json format
line = line.strip()
item_dict = json.loads(line)
# item_dict is a dictionary
# its key is the data id, and its value contains all the data content
item_dict = item_dict.values()
item_dict = list(item_dict)[0] # len(item_dict) == 1
# get the whole dialog data for a single dialog sample
dialog_data = item_dict['dialog_history']
length = len(dialog_data)
turn_list = [] # collect the dialog history
search_text = ""
for i in range(length):
item = dialog_data[i]
action = item['action']
if action == "Wizard => SearchAgent":
search_text = item['text']
elif action == "Wizard => Apprentice":
if len(turn_list) == 0:
# first turn
turn = item['text']
turn_list.append(turn)
continue
# get the relevant content
contents = item["context"]["contents"]
selects = item["context"]["selected_contents"]
flag = selects[0][0]
selects = selects[1:]
assert len(selects) == len(contents)
# get the topic
if flag:
# no knowledge sentence is used for the response
topic = "no_topic"
knwl_sent = "no_passages_used"
else:
# we consider the search text as the topic
topic = search_text
# get the knowledge sentence
knwl_sent = ""
for content, select in zip(contents, selects):
content = content['content']
assert len(content) == len(select)
for c, s in zip(content, select):
if s:
knwl_sent = c
break
if knwl_sent == "":
# no knowledge is used for the response
topic = "no_topic"
knwl_sent = "no_passages_used"
# get dialogue context, knowledge, and response
dialog_context = " [SEP] ".join(turn_list)
response = item['text']
# processing
topic = topic.replace("\n", "").replace("\r", \
"").replace("\t", "")
dialog_context = dialog_context.replace("\n", "").replace("\r", \
"").replace("\t", "")
knwl_sent = knwl_sent.replace("\n", "").replace("\r", \
"").replace("\t", "")
response = response.replace("\n", "").replace("\r", \
"").replace("\t", "")
if topic != "no_topic":
# write to the ouput files
fproc.write(topic + "\t" + dialog_context + "\t" + \
knwl_sent + "\t" + response + "\n")
if fknwl:
fknwl.write(knwl_sent + "\n")
if fresp:
# tokenize for evaluation
response = " ".join(word_tokenize(response))
fresp.write(response + "\n")
turn_list.append(response)
elif action == "Apprentice => Wizard":
turn = item['text']
turn_list.append(turn)
else:
assert action == "SearchAgent => Wizard", \
"Please check whether you have used the correct data!"
fproc.close()
if fknwl:
fknwl.close()
if fresp:
fresp.close()
def get_database(test_datapath, train_datapath, data_type):
"""Get the database by topics"""
assert data_type in ["wow_seen", "wow_unseen", "woi"], \
"Please input a correct data type!!"
# get test data topic dictionary
print("> reading test data from %s" % test_datapath)
test_topics = {}
with open(test_datapath, "r") as f:
for i, line in enumerate(f):
line = line.strip()
splits = line.split("\t")
topic = splits[0]
test_topics[topic] = True
print("> reading data from %s" % train_datapath)
train_data_by_topic = {}
dialog_data_by_topic = {}
dialog_examples = []
with open(train_datapath, "r") as f:
for i, line in enumerate(f):
line = line.strip()
splits = line.split("\t")
topic = splits[0]
turns = splits[1].split(" [SEP] ")[-3:]
knowledge = splits[2]
response = splits[3]
# filtering data samples
if knowledge == "no_passages_used":
# when no knowledge is used
continue
if data_type != "wow_seen" and ("(" in knowledge or ")" in knowledge):
# when bracket exists in the knowledge
continue
if data_type != "wow_seen" and topic not in knowledge:
# when topic does not exist in the knowledge
continue
# get the instance
last_turn = turns[-1]
instance = "( " + last_turn + " ) " + topic + " => " + knowledge
# construct dialog example
dialog_example = ""
if data_type != "wow_seen":
dialog_example += "( " + topic + " ) "
for i, turn in enumerate(turns):
if i != 0:
dialog_example += " "
dialog_example += turn
# check overlaps
if topic in test_topics:
if topic not in train_data_by_topic:
train_data_by_topic[topic] = [instance]
else:
train_data_by_topic[topic].append(instance)
if topic not in dialog_data_by_topic:
dialog_data_by_topic[topic] = [dialog_example]
else:
dialog_data_by_topic[topic].append(dialog_example)
else:
# filtering data samples
if len(knowledge.split()) > 20:
# knowledge is too long
continue
if knowledge.startswith("It") or knowledge.startswith("it") or \
knowledge.startswith("This") or knowledge.startswith("this"):
continue
# append all the data into dialogue examples list
dialog_examples.append((topic, dialog_example, instance))
return train_data_by_topic, dialog_data_by_topic, dialog_examples
emb_dict = {}
def select_prompts_based_on_similarity(
query, dialog_list, prompt_list, topic, tokenizer, encoder, topk):
"""Select samples based on the similarity"""
with torch.no_grad():
# get the query embeddings
query_ids = tokenizer.encode(query)
query_ids = torch.LongTensor([query_ids]).cuda()
query_emb = encoder(input_ids=query_ids).pooler_output
query_emb = query_emb[0]
# calculate embeddings for the samples in the database
if topic in emb_dict:
example_embeddings = emb_dict[topic]
example_embeddings = example_embeddings.cuda()
else:
for idx, example in enumerate(dialog_list):
example_ids = tokenizer.encode(example)
example_ids = torch.LongTensor([example_ids]).cuda()
example_emb = encoder(input_ids=example_ids).pooler_output
if idx == 0:
example_embeddings = example_emb
else:
example_embeddings = torch.cat(
(example_embeddings, example_emb), dim=0)
emb_dict[topic] = example_embeddings.cpu()
# compare the similarity and select the topk samples
similarity_list = example_embeddings.matmul(query_emb)
_, indices = torch.topk(similarity_list, k=topk)
indices = indices.tolist()
indices = indices[::-1] # reverse the order
selected_prompts = []
for index in indices:
# index = index.item()
selected_prompts.append(prompt_list[index])
return selected_prompts
def prompt_selection_for_knowledge_generation(
test_datapath, train_datapath, model_path, output_prompt_path, data_type):
"""Selecting prompts for the knowledge generation"""
print("> Selecting prompts for the knowledge generation")
train_data_by_topic, dialog_data_by_topic, dialog_examples = \
get_database(test_datapath, train_datapath, data_type)
from transformers import DPRQuestionEncoderTokenizer
print("> loading tokenizer and encoder")
tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
'facebook/dpr-question_encoder-single-nq-base')
encoder = torch.load(model_path).cuda()
print("> getting dialog embeddings")
with torch.no_grad():
for idx, example in tqdm(enumerate(dialog_examples)):
dialog = example[1]
dialog_ids = tokenizer.encode(dialog)
dialog_ids = torch.LongTensor([dialog_ids]).cuda()
dialog_emb = encoder(input_ids=dialog_ids).pooler_output
if idx == 0:
dialog_embeddings = dialog_emb
else:
dialog_embeddings = torch.cat((dialog_embeddings, dialog_emb), dim=0)
print("> reading test data from %s" % test_datapath)
prompt_list_for_each_sample = []
with open(test_datapath, "r") as f:
for i, line in tqdm(enumerate(f)):
line = line.strip()
splits = line.split("\t")
topic = splits[0]
turns = splits[1].split(" [SEP] ")[-3:]
# get the query sentence
query_sent = ""
if data_type != "seen":
query_sent += "( " + topic + " ) "
for i, turn in enumerate(turns):
if i != 0:
query_sent += " "
query_sent += turn
if topic not in train_data_by_topic:
# get the query embedding
query_ids = tokenizer.encode(query_sent)
query_ids = torch.LongTensor([query_ids]).cuda()
query_emb = encoder(input_ids=query_ids).pooler_output
query_emb = query_emb[0]
# calculate the similarity
similarity_list = dialog_embeddings.matmul(query_emb)
_, indices = torch.sort(similarity_list)
indices = indices.tolist()
selected_topics = {}
selected_prompts = []
num_prompt = 0
for index in indices:
example = dialog_examples[index]
topic_temp = example[0]
if topic_temp not in selected_topics:
selected_topics[topic_temp] = True
selected_prompts.append(example[2])
num_prompt += 1
if num_prompt == 10:
break
# get the selected samples
example_list = selected_prompts[::-1]
key = topic + " " + turns[-1]
prompt_list_for_each_sample.append({key: example_list})
else:
num_data_sample = min(len(train_data_by_topic[topic]), 10)
total_example_list = train_data_by_topic[topic]
dialog_list = dialog_data_by_topic[topic]
assert len(dialog_list) == len(train_data_by_topic[topic])
# calculate the similarity
example_list = select_prompts_based_on_similarity(
query_sent, dialog_list, total_example_list,
topic, tokenizer, encoder, topk=num_data_sample)
key = topic + " " + turns[-1]
prompt_list_for_each_sample.append({key: example_list})
print("writing to %s" % output_prompt_path)
with open(output_prompt_path, "w") as f:
for instance in tqdm(prompt_list_for_each_sample):
json.dump(instance, f)
f.write("\n")
def prompt_selection_for_response_generation(input_path, output_path, seed):
"""Selecting prompts for the response generation"""
print("> Selecting prompts for the response generation")
print("> set random seed")
np.random.seed(seed)
prompt_example_list = []
print("> reading data from %s" % input_path)
with open(input_path, "r") as f:
for i, line in tqdm(enumerate(f)):
line = line.strip()
splits = line.split("\t")
# get the topic, context, knowledge and response
topic = splits[0]
dialog_context = splits[1]
knowledge = splits[2]
response = splits[3]
turns = dialog_context.split(" [SEP] ")[-3:]
if knowledge == "no_passages_used":
continue
# calculate the overlap ratio
from nltk import word_tokenize
knowledge_sent_token_list = word_tokenize(knowledge)
knowledge_sent_token_dict = {token: True for token in knowledge_sent_token_list}
knowledge_len = len(knowledge_sent_token_list)
response_token_list = word_tokenize(response)
response_len = len(response_token_list)
num_overlap_token = 0
accumulator = 0
for token in response_token_list:
if token in knowledge_sent_token_dict:
accumulator += 1
else:
if accumulator >= 10:
num_overlap_token += accumulator
accumulator = 0
if accumulator >= 10:
num_overlap_token += accumulator
# filtering the data based on the ratio
if num_overlap_token > response_len * 0.9 or num_overlap_token < response_len * 0.6:
continue
if num_overlap_token < knowledge_len * 0.8:
continue
last_turn = " ".join(word_tokenize(turns[-1]))
knowledge = " ".join(word_tokenize(knowledge))
response = " ".join(word_tokenize(response))
prompt_example = ""
# add dialog context
prompt_example += "Topic: " + topic + ". "
prompt_example += "User says: " + last_turn + " "
prompt_example += "We know that: " + knowledge + " "
prompt_example += "System replies: " + response
prompt_example_list.append(prompt_example)
# shuffle the prompt examples
np.random.shuffle(prompt_example_list)
print("> writing to %s" % output_path)
with open(output_path, "w") as f:
# f.write("Generate the System's response based on the knowledge sentence:\n")
for i in tqdm(range(20)):
example = prompt_example_list[i]
f.write(example + "\n")
def prepare_input_for_response_generation(test_file, knwl_gen_file, processed_file):
"""Preparing inputs for the response generation"""
print("> Reading knowledge file from %s" % knwl_gen_file)
# get the knowledge list
with open(knwl_gen_file, "r") as f:
knowledge_list = f.readlines()
print("> Processing ...")
with open(test_file, "r") as fr:
with open(processed_file, "w") as fw:
for line_num, line in enumerate(tqdm(fr)):
line = line.strip()
splits = line.split("\t")
# prepare topic, context, knowledge and response
topic = splits[0]
dialog_context = splits[1]
response = splits[3]
knowledge = knowledge_list[line_num]
knowledge = knowledge.strip()
if "<|endoftext|>" in knowledge:
knowledge = knowledge.replace("<|endoftext|>", "")
# write to the output file
fw.write(topic + "\t" + dialog_context + "\t" \
+ knowledge + "\t" + response + "\n")
if __name__ == "__main__":
args = get_args()
if args.func == "process_wow_dataset":
process_wow_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file)
elif args.func == "process_woi_dataset":
process_woi_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file)
elif args.func == "get_knwl_gen_prompts":
prompt_selection_for_knowledge_generation(
args.test_file, args.train_file, args.model_file,
args.processed_file, args.data_type)
elif args.func == "get_resp_gen_prompts":
prompt_selection_for_response_generation(
args.train_file, args.processed_file, args.seed)
elif args.func == "prepare_input":
prepare_input_for_response_generation(
args.test_file, args.knwl_gen_file, args.processed_file)
|