File size: 23,951 Bytes
c2c125c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Preprocessing for Wizard of Wikipedia and Wizard of Internet datasets"""

import torch
import argparse
from nltk import word_tokenize
from tqdm import tqdm
import numpy as np
import json

def get_args():
    parser = argparse.ArgumentParser(description="Preprocessing")

    parser.add_argument("--func", type=str, default=None,
                        help="choose to run which function")
    parser.add_argument("--raw_file", type=str, default=None,
                        help="path of the input file")
    parser.add_argument("--processed_file", type=str, default=None,
                        help="path of the output file")
    parser.add_argument("--knwl_ref_file", type=str, default=None,
                        help="path of the knowledge reference file")
    parser.add_argument("--resp_ref_file", type=str, default=None,
                        help="path of the knowledge reference file")
    parser.add_argument("--knwl_gen_file", type=str, default=None,
                        help="path of the generated knowledge file")
    parser.add_argument("--test_file", type=str, default=None,
                        help="path of the test file")
    parser.add_argument("--train_file", type=str, default=None,
                        help="path of the train file")
    parser.add_argument("--model_file", type=str, default=None,
                        help="path of the model file")
    parser.add_argument("--data_type", type=str, default=None,
                        help="data types, choose one out of three types: \
                              wow_seen, wow_unseen, and woi")
    parser.add_argument("--seed", type=int, default=1234,
                        help="random seed")

    args = parser.parse_args()
    return args


def process_wow_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file):
    """
      This is a function used for processing the wizard of wikipedia (wow) dataset
      Expected processed format:
      topic \t dialogue context \t golden knowledge \t golden response
    """

    # loading the raw data
    print("> Loading data from %s" % raw_file)
    with open(raw_file, "r") as fr:
        dialog_data = json.load(fr)
    
    print("> Processing data ...")
    fproc = open(processed_file, "w")
    fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None
    fresp = open(resp_ref_file, "w") if resp_ref_file else None
    
    for i, sample in enumerate(tqdm(dialog_data)):
        # get all the dialog data for a single dialog sample
        dialog = sample["dialog"]
        
        turn_list = []  # collect the dialog history
        # processing for each single dialog sample
        for j, turn in enumerate(dialog):
            # text of each turn
            text = turn["text"]
            if not (text.endswith("?") or text.endswith(".") or text.endswith("!")):
                text = text + "."
            
            if j == 0:
                # first turn
                turn_list.append(text)
                continue

            speaker = turn["speaker"].lower()
            if "wizard" in speaker:
                checked_sentence = list(turn["checked_sentence"].values())  # knowledge
                checked_passage = list(turn["checked_passage"].values())    # topic
                
                assert len(checked_sentence) <= 1

                # get the ground truth knowledge
                if len(checked_sentence) > 0:
                    checked_sentence = checked_sentence[0]
                else:
                    checked_sentence = "no_passages_used"

                if len(checked_passage) == 1:
                    checked_passage = checked_passage[0]
                else:
                    checked_passage = "no_passages_used"

                # get the topic
                if checked_passage != "no_passages_used":
                    topic = checked_passage
                else:
                    topic = sample["chosen_topic"]
                
                dialog_context = " [SEP] ".join(turn_list)
                knowledge = checked_sentence
                response = text
                # add the response into the dialog history
                turn_list.append(response)

                # write to the output files
                fproc.write(topic + "\t" + dialog_context + "\t" + \
                                knowledge + "\t" + response + "\n")
                
                if fknwl:
                    fknwl.write(knowledge + "\n")
                if fresp:
                    # tokenize for evaluation
                    response = " ".join(word_tokenize(response))
                    fresp.write(response + "\n")

            else:
                assert "apprentice" in speaker
                turn_list.append(text)

    fproc.close()
    if fknwl:
        fknwl.close()
    if fresp:
        fresp.close()


def process_woi_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file):
    """
      This is a function used for processing the wizard of internet (woi) dataset
      Expected processed format:
      topic \t dialogue context \t golden knowledge \t golden response
    """
    
    print("> Processing %s" % raw_file)
    fproc = open(processed_file, "w")
    fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None
    fresp = open(resp_ref_file, "w") if resp_ref_file else None
    
    with open(raw_file, "r") as fr:
        for i, line in tqdm(enumerate(fr)):
            # read line by line, each line uses json format
            line = line.strip()
            item_dict = json.loads(line)

            # item_dict is a dictionary
            # its key is the data id, and its value contains all the data content
            item_dict = item_dict.values()
            item_dict = list(item_dict)[0]  # len(item_dict) == 1
            
            # get the whole dialog data for a single dialog sample
            dialog_data = item_dict['dialog_history']
            length = len(dialog_data)
            
            turn_list = []  # collect the dialog history
            search_text = ""
            for i in range(length):
                item = dialog_data[i]
                action = item['action']

                if action == "Wizard => SearchAgent":
                    search_text = item['text']

                elif action == "Wizard => Apprentice":
                    if len(turn_list) == 0:
                        # first turn
                        turn = item['text']
                        turn_list.append(turn)
                        continue

                    # get the relevant content
                    contents = item["context"]["contents"]
                    selects = item["context"]["selected_contents"]
                    flag = selects[0][0]
                    selects = selects[1:]
                    assert len(selects) == len(contents)
                    
                    # get the topic
                    if flag:
                        # no knowledge sentence is used for the response
                        topic = "no_topic"
                        knwl_sent = "no_passages_used"
                    else:
                        # we consider the search text as the topic
                        topic = search_text
                        # get the knowledge sentence
                        knwl_sent = ""
                        for content, select in zip(contents, selects):
                            content = content['content']
                            assert len(content) == len(select)
                            for c, s in zip(content, select):
                                if s:
                                    knwl_sent = c
                                    break

                    if knwl_sent == "":
                        # no knowledge is used for the response
                        topic = "no_topic"
                        knwl_sent = "no_passages_used"

                    # get dialogue context, knowledge, and response 
                    dialog_context = " [SEP] ".join(turn_list)
                    response = item['text']

                    # processing
                    topic = topic.replace("\n", "").replace("\r", \
                                "").replace("\t", "")
                    dialog_context = dialog_context.replace("\n", "").replace("\r", \
                                "").replace("\t", "")
                    knwl_sent = knwl_sent.replace("\n", "").replace("\r", \
                                "").replace("\t", "")
                    response = response.replace("\n", "").replace("\r", \
                                "").replace("\t", "")
                    
                    if topic != "no_topic":
                        # write to the ouput files
                        fproc.write(topic + "\t" + dialog_context + "\t" + \
                                        knwl_sent + "\t" + response + "\n")
                        if fknwl:
                            fknwl.write(knwl_sent + "\n")
                        if fresp:
                            # tokenize for evaluation
                            response = " ".join(word_tokenize(response))
                            fresp.write(response + "\n")

                    turn_list.append(response)

                elif action == "Apprentice => Wizard":
                    turn = item['text']
                    turn_list.append(turn)

                else:
                    assert action == "SearchAgent => Wizard", \
                            "Please check whether you have used the correct data!"

    fproc.close()
    if fknwl:
        fknwl.close()
    if fresp:
        fresp.close()


def get_database(test_datapath, train_datapath, data_type):
    """Get the database by topics"""

    assert data_type in ["wow_seen", "wow_unseen", "woi"], \
                "Please input a correct data type!!"

    # get test data topic dictionary
    print("> reading test data from %s" % test_datapath)
    test_topics = {}
    with open(test_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            topic = splits[0]
            test_topics[topic] = True

    print("> reading data from %s" % train_datapath)
    train_data_by_topic = {}
    dialog_data_by_topic = {}
    dialog_examples = []
    with open(train_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            topic = splits[0]
            turns = splits[1].split(" [SEP] ")[-3:]
            knowledge = splits[2]
            response = splits[3]
            # filtering data samples
            if knowledge == "no_passages_used":
                # when no knowledge is used
                continue
            if data_type != "wow_seen" and ("(" in knowledge or ")" in knowledge):
                # when bracket exists in the knowledge
                continue
            if data_type != "wow_seen" and topic not in knowledge:
                # when topic does not exist in the knowledge
                continue

            # get the instance
            last_turn = turns[-1]
            instance = "( " + last_turn + " ) " + topic + " => " + knowledge
            
            # construct dialog example
            dialog_example = ""
            if data_type != "wow_seen":
                dialog_example += "( " + topic + " ) "
            for i, turn in enumerate(turns):
                if i != 0:
                    dialog_example += " "
                dialog_example += turn
            
            # check overlaps
            if topic in test_topics:
                if topic not in train_data_by_topic:
                    train_data_by_topic[topic] = [instance]
                else:
                    train_data_by_topic[topic].append(instance)
                
                if topic not in dialog_data_by_topic:
                    dialog_data_by_topic[topic] = [dialog_example]
                else:
                    dialog_data_by_topic[topic].append(dialog_example)
            
            else:
                # filtering data samples
                if len(knowledge.split()) > 20:
                    # knowledge is too long
                    continue
                if knowledge.startswith("It") or knowledge.startswith("it") or \
                   knowledge.startswith("This") or knowledge.startswith("this"):
                    continue
                
            # append all the data into dialogue examples list
            dialog_examples.append((topic, dialog_example, instance))

    return train_data_by_topic, dialog_data_by_topic, dialog_examples


emb_dict = {}
def select_prompts_based_on_similarity(
        query, dialog_list, prompt_list, topic, tokenizer, encoder, topk):
    """Select samples based on the similarity"""

    with torch.no_grad():
        # get the query embeddings
        query_ids = tokenizer.encode(query)
        query_ids = torch.LongTensor([query_ids]).cuda()
        query_emb = encoder(input_ids=query_ids).pooler_output
        query_emb = query_emb[0]
        
        # calculate embeddings for the samples in the database
        if topic in emb_dict:
            example_embeddings = emb_dict[topic]
            example_embeddings = example_embeddings.cuda()
        else:
            for idx, example in enumerate(dialog_list):
                example_ids = tokenizer.encode(example)
                example_ids = torch.LongTensor([example_ids]).cuda()
                example_emb = encoder(input_ids=example_ids).pooler_output
                if idx == 0:
                    example_embeddings = example_emb
                else:
                    example_embeddings = torch.cat(
                        (example_embeddings, example_emb), dim=0)
            emb_dict[topic] = example_embeddings.cpu()

        # compare the similarity and select the topk samples
        similarity_list = example_embeddings.matmul(query_emb)
        _, indices = torch.topk(similarity_list, k=topk)
    
    indices = indices.tolist()
    indices = indices[::-1] # reverse the order
    selected_prompts = []
    for index in indices:
        # index = index.item()
        selected_prompts.append(prompt_list[index])

    return selected_prompts


def prompt_selection_for_knowledge_generation(
        test_datapath, train_datapath, model_path, output_prompt_path, data_type):
    """Selecting prompts for the knowledge generation"""

    print("> Selecting prompts for the knowledge generation")

    train_data_by_topic, dialog_data_by_topic, dialog_examples = \
                            get_database(test_datapath, train_datapath, data_type)
    
    from transformers import DPRQuestionEncoderTokenizer
    print("> loading tokenizer and encoder")
    tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
                    'facebook/dpr-question_encoder-single-nq-base')
    encoder = torch.load(model_path).cuda()

    print("> getting dialog embeddings")
    with torch.no_grad():
        for idx, example in tqdm(enumerate(dialog_examples)):
            dialog = example[1]
            dialog_ids = tokenizer.encode(dialog)
            dialog_ids = torch.LongTensor([dialog_ids]).cuda()
            dialog_emb = encoder(input_ids=dialog_ids).pooler_output

            if idx == 0:
                dialog_embeddings = dialog_emb
            else:
                dialog_embeddings = torch.cat((dialog_embeddings, dialog_emb), dim=0)

    print("> reading test data from %s" % test_datapath)
    prompt_list_for_each_sample = []
    with open(test_datapath, "r") as f:
        for i, line in tqdm(enumerate(f)):
            line = line.strip()

            splits = line.split("\t")
            topic = splits[0]
            turns = splits[1].split(" [SEP] ")[-3:]

            # get the query sentence
            query_sent = ""
            if data_type != "seen":
                query_sent += "( " + topic + " ) "
            for i, turn in enumerate(turns):
                if i != 0:
                    query_sent += " "
                query_sent += turn

            if topic not in train_data_by_topic:
                # get the query embedding
                query_ids = tokenizer.encode(query_sent)
                query_ids = torch.LongTensor([query_ids]).cuda()
                query_emb = encoder(input_ids=query_ids).pooler_output
                query_emb = query_emb[0]

                # calculate the similarity
                similarity_list = dialog_embeddings.matmul(query_emb)
                _, indices = torch.sort(similarity_list)
                indices = indices.tolist()
                selected_topics = {}
                selected_prompts = []
                num_prompt = 0
                for index in indices:
                    example = dialog_examples[index]
                    topic_temp = example[0]
                    if topic_temp not in selected_topics:
                        selected_topics[topic_temp] = True
                        selected_prompts.append(example[2])
                        num_prompt += 1
                        if num_prompt == 10:
                            break
                
                # get the selected samples
                example_list = selected_prompts[::-1]
                key = topic + " " + turns[-1]
                prompt_list_for_each_sample.append({key: example_list})

            else:
                num_data_sample = min(len(train_data_by_topic[topic]), 10)
                total_example_list = train_data_by_topic[topic]
                
                dialog_list = dialog_data_by_topic[topic]
                assert len(dialog_list) == len(train_data_by_topic[topic])

                # calculate the similarity
                example_list = select_prompts_based_on_similarity(
                                query_sent, dialog_list, total_example_list, 
                                topic, tokenizer, encoder, topk=num_data_sample)
                
                key = topic + " " + turns[-1]
                prompt_list_for_each_sample.append({key: example_list})

    print("writing to %s" % output_prompt_path)
    with open(output_prompt_path, "w") as f:
        for instance in tqdm(prompt_list_for_each_sample):
            json.dump(instance, f)
            f.write("\n")


def prompt_selection_for_response_generation(input_path, output_path, seed):
    """Selecting prompts for the response generation"""

    print("> Selecting prompts for the response generation")
    print("> set random seed")
    np.random.seed(seed)

    prompt_example_list = []
    print("> reading data from %s" % input_path)
    with open(input_path, "r") as f:
        for i, line in tqdm(enumerate(f)):
            line = line.strip()
            splits = line.split("\t")

            # get the topic, context, knowledge and response
            topic = splits[0]
            dialog_context = splits[1]
            knowledge = splits[2]
            response = splits[3]
            turns = dialog_context.split(" [SEP] ")[-3:]
            if knowledge == "no_passages_used":
                continue

            # calculate the overlap ratio
            from nltk import word_tokenize
            knowledge_sent_token_list = word_tokenize(knowledge)
            knowledge_sent_token_dict = {token: True for token in knowledge_sent_token_list}
            knowledge_len = len(knowledge_sent_token_list)
            response_token_list = word_tokenize(response)
            response_len = len(response_token_list)
            num_overlap_token = 0
            accumulator = 0
            for token in response_token_list:
                if token in knowledge_sent_token_dict:
                    accumulator += 1
                else:
                    if accumulator >= 10:
                        num_overlap_token += accumulator
                    accumulator = 0
            if accumulator >= 10:
                num_overlap_token += accumulator
            
            # filtering the data based on the ratio
            if num_overlap_token > response_len * 0.9 or num_overlap_token < response_len * 0.6:
                continue
            if num_overlap_token < knowledge_len * 0.8:
                continue
            
            last_turn = " ".join(word_tokenize(turns[-1]))
            knowledge = " ".join(word_tokenize(knowledge))
            response = " ".join(word_tokenize(response))
            prompt_example = ""
            # add dialog context
            prompt_example += "Topic: " + topic + ". "
            prompt_example += "User says: " + last_turn + " "
            prompt_example += "We know that: " + knowledge + " "
            prompt_example += "System replies: " + response
            
            prompt_example_list.append(prompt_example)
        
    # shuffle the prompt examples
    np.random.shuffle(prompt_example_list)
    
    print("> writing to %s" % output_path)
    with open(output_path, "w") as f:
        # f.write("Generate the System's response based on the knowledge sentence:\n")
        for i in tqdm(range(20)):
            example = prompt_example_list[i]
            f.write(example + "\n")


def prepare_input_for_response_generation(test_file, knwl_gen_file, processed_file):
    """Preparing inputs for the response generation"""

    print("> Reading knowledge file from %s" % knwl_gen_file)
    # get the knowledge list
    with open(knwl_gen_file, "r") as f:
        knowledge_list = f.readlines()
    
    print("> Processing ...")
    with open(test_file, "r") as fr:
        with open(processed_file, "w") as fw:
            for line_num, line in enumerate(tqdm(fr)):
                line = line.strip()
                splits = line.split("\t")
                # prepare topic, context, knowledge and response
                topic = splits[0]
                dialog_context = splits[1]
                response = splits[3]
                knowledge = knowledge_list[line_num]
                knowledge = knowledge.strip()
                if "<|endoftext|>" in knowledge:
                    knowledge = knowledge.replace("<|endoftext|>", "")

                # write to the output file
                fw.write(topic + "\t" + dialog_context + "\t" \
                                     + knowledge + "\t" + response + "\n")


if __name__ == "__main__":

    args = get_args()
    if args.func == "process_wow_dataset":
        process_wow_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file)

    elif args.func == "process_woi_dataset":
        process_woi_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file)

    elif args.func == "get_knwl_gen_prompts":
        prompt_selection_for_knowledge_generation(
            args.test_file, args.train_file, args.model_file, 
            args.processed_file, args.data_type)
    
    elif args.func == "get_resp_gen_prompts":
        prompt_selection_for_response_generation(
            args.train_file, args.processed_file, args.seed)

    elif args.func == "prepare_input":
        prepare_input_for_response_generation(
            args.test_file, args.knwl_gen_file, args.processed_file)