File size: 11,059 Bytes
c2c125c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ORQA dataset."""
import json
import random
from abc import ABC
from abc import abstractmethod
import numpy as np
from torch.utils.data import Dataset
from megatron import print_rank_0, get_args
from megatron.data.biencoder_dataset_utils import make_attention_mask
def build_token_types_from_context_list(ctx_list, tokenizer, max_seq_length):
ctx_id_list, ctx_types_list = [], []
for context in ctx_list:
title_ids = tokenizer.tokenize(context['title'])
ctx_ids = tokenizer.tokenize(context['text'])
ctx_ids = title_ids + [tokenizer.sep_id] + ctx_ids
ctx_ids, ctx_types, _ = build_tokens_types_paddings_from_ids(ctx_ids,
max_seq_length, tokenizer.cls,
tokenizer.sep, tokenizer.pad)
ctx_id_list.append(ctx_ids)
ctx_types_list.append(ctx_types)
return ctx_id_list, ctx_types_list
def build_tokens_types_paddings_from_text(query, context,
tokenizer, max_seq_length):
"""Build token types and paddings, trim if needed, and pad if needed."""
query_ids = tokenizer.tokenize(query)
query_ids, query_types, query_pad_mask = \
build_tokens_types_paddings_from_ids(query_ids, max_seq_length, \
tokenizer.cls, tokenizer.sep, tokenizer.pad)
# Appending the title of the context at front
extended_ctx_ids = None
if context is not None:
title_ids = tokenizer.tokenize(context['title'])
ctx_ids = tokenizer.tokenize(context['text'])
extended_ctx_ids = title_ids + [tokenizer.sep] + ctx_ids
ctx_ids, ctx_types, ctx_pad_mask = \
build_tokens_types_paddings_from_ids(extended_ctx_ids,
max_seq_length, tokenizer.cls, tokenizer.sep, tokenizer.pad)
return query_ids, query_types, query_pad_mask, \
ctx_ids, ctx_types, ctx_pad_mask
# Similar code tasks/data_utils with some changes
def build_tokens_types_paddings_from_ids(text_ids, max_seq_length,
cls_id, sep_id, pad_id):
"""Build token types and paddings, trim if needed, and pad if needed."""
enc_ids = []
tokentypes_enc = []
# [CLS].
enc_ids.append(cls_id)
tokentypes_enc.append(0)
# A.
len_src = len(text_ids)
enc_ids.extend(text_ids)
tokentypes_enc.extend([0] * len_src)
# Cap the size.
if len(enc_ids) > max_seq_length - 1:
enc_ids = enc_ids[0: max_seq_length - 1]
tokentypes_enc = tokentypes_enc[0: max_seq_length - 1]
# [SEP].
enc_ids.append(sep_id)
tokentypes_enc.append(0)
num_tokens_enc = len(enc_ids)
# Padding.
padding_length = max_seq_length - len(enc_ids)
if padding_length > 0:
enc_ids.extend([pad_id] * padding_length)
tokentypes_enc.extend([pad_id] * padding_length)
pad_mask = ([1] * num_tokens_enc) + ([0] * padding_length)
pad_mask = np.array(pad_mask, dtype=np.int64)
return enc_ids, tokentypes_enc, pad_mask
def build_sample(query_ids, query_types, query_pad_mask,
ctx_ids, ctx_types, ctx_pad_mask, answers,
neg_ctx_id_list=None, neg_ctx_types_list=None,
include_neg=False):
"""Convert to numpy and return a sample consumed by the batch producer."""
query_ids = np.array(query_ids, dtype=np.int64)
query_types = np.array(query_types, dtype=np.int64)
query_mask = make_attention_mask(query_ids, query_ids)
ctx_ids = np.array(ctx_ids, dtype=np.int64)
ctx_types = np.array(ctx_types, dtype=np.int64)
ctx_mask = make_attention_mask(ctx_ids, ctx_ids)
sample = ({
'query': query_ids,
'query_mask': query_mask,
'query_types': query_types,
'query_pad_mask': query_pad_mask,
'context': ctx_ids,
'context_mask': ctx_mask,
'context_types': ctx_types,
'context_pad_mask': ctx_pad_mask,
'reference': answers
})
if include_neg:
neg_ctx_ids = np.array(neg_ctx_id_list, dtype=np.int64)
neg_ctx_id_types = np.array(neg_ctx_types_list, dtype=np.int64)
neg_ctx_mask = np.array([make_attention_mask(ids, ids) \
for ids in neg_ctx_ids], dtype=np.int64)
sample['neg_context'] = neg_ctx_ids
sample['neg_context_types'] = neg_ctx_id_types
sample['neg_context_mask'] = neg_ctx_mask
return sample
class OpenRetrievalAbstractDataset(ABC, Dataset):
"""Open Retrieval base dataset class."""
def __init__(self, task_name, dataset_name, datapaths, tokenizer, \
max_seq_length, evaluate=False):
# Store inputs.
args = get_args()
self.evaluate = evaluate
self.val_av_rank_hard_neg = args.val_av_rank_hard_neg
self.val_av_rank_other_neg = args.val_av_rank_other_neg
self.train_with_neg = args.train_with_neg
self.train_hard_neg = args.train_hard_neg
self.task_name = task_name
self.dataset_name = dataset_name
self.tokenizer = tokenizer
self.max_seq_length = max_seq_length
print_rank_0(' > building {} dataset for {}:'.format(self.task_name,
self.dataset_name))
# Process the files.
string = ' > paths:'
for path in datapaths:
string += ' ' + path
print_rank_0(string)
self.samples = []
for datapath in datapaths:
self.samples.extend(self.process_samples_from_single_path(datapath))
args = get_args()
if args.sample_rate < 1: # subsample
k = int(len(self.samples) * args.sample_rate)
self.samples = random.sample(self.samples, k)
print_rank_0(' >> total number of samples: {}'.format(
len(self.samples)))
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
raw_sample = self.samples[idx]
query_ids, query_types, query_pad_mask, ctx_ids, ctx_types, \
ctx_pad_mask = build_tokens_types_paddings_from_text( \
raw_sample['question'], raw_sample['pos_context'], \
self.tokenizer, self.max_seq_length)
if self.evaluate:
neg_ctx_list = \
raw_sample['negative_context'][:self.val_av_rank_other_neg] + \
raw_sample['hard_negative_context'][:self.val_av_rank_hard_neg]
neg_ctx_id_list, neg_ctx_types_list = \
build_token_types_from_context_list(neg_ctx_list, \
self.tokenizer, self.max_seq_length)
elif self.train_with_neg:
hard_negative_ctx = raw_sample['hard_negative_context']
negative_ctx = raw_sample['negative_context']
if True: # TODO: fix this or remove this condition
random.shuffle(hard_negative_ctx)
random.shuffle(negative_ctx)
neg_ctx_list = hard_negative_ctx[:self.train_hard_neg]
# In the Google NQ dataset by DPR paper, there are around more than
# 50 missing hard negatives in training data.
# In those cases, substitute hard negatives by simple negatives.
if len(neg_ctx_list) < self.train_hard_neg:
neg_ctx_list += negative_ctx[:self.train_hard_neg - \
len(neg_ctx_list)]
neg_ctx_id_list, neg_ctx_types_list = \
build_token_types_from_context_list(neg_ctx_list,
self.tokenizer, self.max_seq_length)
else:
neg_ctx_id_list = None
neg_ctx_types_list = None
sample = build_sample(query_ids, query_types, query_pad_mask,
ctx_ids, ctx_types, ctx_pad_mask,
raw_sample['answers'],
neg_ctx_id_list, neg_ctx_types_list,
include_neg=self.evaluate or self.train_with_neg)
return sample
@staticmethod
@abstractmethod
def process_samples_from_single_path(filename):
"""Abstract method that takes a filename and
returns a list of dataset samples, each sample being a dict of
{'text': string, 'text': string}
"""
pass
def normalize_question(question):
if question[-1] == '?':
question = question[:-1]
return question
# The following class reads the datasets for training retriever as
# prepared by the DPR codebase (https://github.com/facebookresearch/DPR)
class NQSupervisedDataset(OpenRetrievalAbstractDataset):
def __init__(self, name, datapaths, tokenizer, max_seq_length, \
evaluate=False):
super().__init__('natural_questions_ret',
name,
datapaths,
tokenizer,
max_seq_length,
evaluate=evaluate)
@staticmethod
def process_samples_from_single_path(filename):
""""Implement abstract method."""
print_rank_0(' > Processing {} ...'.format(filename))
samples = []
total = 0
with open(filename, 'r', encoding="utf-8") as f:
data = json.load(f)
for row in data:
question = normalize_question(row['question'])
pos_context = row['positive_ctxs'][0]
# Hard Negative Contexts
if len(row['hard_negative_ctxs']) > 0:
hard_neg_context = row['hard_negative_ctxs']
else:
hard_neg_context = []
# Negative Contexts
if len(row['negative_ctxs']) > 0:
neg_context = row['negative_ctxs']
else:
neg_context = []
answers = row['answers']
sample = {'question': question,
'pos_context': pos_context,
'hard_negative_context': hard_neg_context,
'negative_context': neg_context,
'answers': answers}
total += 1
samples.append(sample)
if total % 5000 == 0:
print_rank_0(' > processed {} so far ...'.format(total))
print_rank_0(' >> processed {} samples.'.format(len(samples)))
return samples
|