File size: 8,005 Bytes
c2c125c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Evaluation utilities."""
from collections import OrderedDict
import math
import numpy as np
import time
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader

from megatron import get_args, print_rank_0
from megatron import mpu
from megatron.utils import average_losses_across_data_parallel_group
from tasks.finetune_utils import build_data_loader

def task_collate_fn(batch_data):
    # generate batch
    batch_size = len(batch_data)
    tensorized = OrderedDict()
    for d in batch_data:
        for k, v in d.items():
            tensorized.setdefault(k, []).append(v)

    tensorized['query'] = torch.LongTensor(tensorized['query'])
    tensorized['query_mask'] = torch.LongTensor(tensorized['query_mask'])
    tensorized['query_types'] = torch.LongTensor(tensorized['query_types'])
    tensorized['query_pad_mask'] = \
        torch.LongTensor(tensorized['query_pad_mask'])

    tensorized['context'] = torch.LongTensor(tensorized['context'])
    tensorized['context_mask'] = \
        torch.LongTensor(tensorized['context_mask'])
    tensorized['context_types'] = \
        torch.LongTensor(tensorized['context_types'])
    tensorized['context_pad_mask'] = \
        torch.LongTensor(tensorized['context_pad_mask'])

    if 'neg_context' in tensorized:
        tensorized['neg_context'] = \
            torch.LongTensor(np.concatenate(tensorized['neg_context']))
        tensorized['neg_context_mask'] = \
            torch.LongTensor(np.concatenate(tensorized['neg_context_mask']))
        tensorized['neg_context_types'] = \
            torch.LongTensor(np.concatenate(tensorized['neg_context_types']))

    return tensorized



def process_batch(batch):
    """Process batch and produce inputs for the model."""
    query_tokens = batch['query'].long().cuda()
    query_mask = (batch['query_mask'] < 0.5).cuda()
    query_types = batch['query_types'].long().cuda()
    query_pad_mask = batch['query_pad_mask'].long().cuda()

    context_tokens = batch['context'].long().cuda()
    context_mask = (batch['context_mask'] < 0.5).cuda()
    context_types = batch['context_types'].long().cuda()
    context_pad_mask = batch['context_pad_mask'].long().cuda()

    if 'neg_context' in batch:
        neg_context_tokens = batch['neg_context'].long().cuda()
        neg_context_mask = (batch['neg_context_mask'] < 0.5).cuda()
        neg_context_types = batch['neg_context_types'].long().cuda()
    else:
        neg_context_tokens = None
        neg_context_mask = None
        neg_context_types = None

    reference = batch['reference']

    return query_tokens, query_mask, query_types, query_pad_mask, \
           context_tokens, context_mask, context_types, context_pad_mask, \
           neg_context_tokens, neg_context_mask, neg_context_types, reference

def accuracy_func_provider(single_dataset_provider, rank0sampler=False):
    """Provide function that calculates accuracies."""
    args = get_args()

    print_rank_0("accuracy_func_provider is CALLED")

    # Build dataloaders
    datapath = args.valid_data
    dataset = single_dataset_provider(datapath)

    drop_last = False
    if mpu.get_data_parallel_world_size() > 1 and not rank0sampler:
        drop_last = True

    print_rank_0(datapath)
    print_rank_0(rank0sampler)

    dataloader = build_data_loader(dataset,
                                   args.eval_micro_batch_size,
                                   num_workers=args.num_workers,
                                   drop_last=drop_last,
                                   task_collate_fn=task_collate_fn)
    dataloaders = (dataset.dataset_name, dataloader)

    def metrics_func(model, epoch, output_predictions=False):
        print_rank_0('calculating metrics by accuracy func in ORQA...')

        if output_predictions:
            assert rank0sampler
            names = 'predictions'
        name, dataloader = dataloaders
        if args.task == "RET-FINETUNE-NQ":
            start_time = time.time()
            output = retrieval_loss(model, dataloader)
            stats_dict, total = output
            format_string = ""
            for k, v in stats_dict.items():
                format_string += "|{} = {:.2f}".format(k, v / total)
            print_rank_0("epoch:{}{}".format(epoch, format_string))
            print_rank_0("taken time to calcuate metrics {:.3f}".format(\
                time.time() - start_time))
        else:
            raise AssertionError("{} Task not supported".format(args.task))

    return metrics_func


def retrieval_loss(model, dataloader):
    args = get_args()
    total = 0
    topk_stats_dict = {'top{}_acc'.format(k): 0 for k in \
        args.retriever_report_topk_accuracies}
    stats_dict = dict(rank=0, **topk_stats_dict)

    assert len(model) == 1
    unwrapped_model = model[0]
    unwrapped_model.eval()

    with torch.no_grad():
        # For all the batches in the dataset.
        for batch in dataloader:
            # Run the model forward.
            query_tokens, query_mask, query_types, _, \
            context_tokens, context_mask, context_types, _, \
            neg_context_tokens, neg_context_mask, neg_context_types, \
            reference = process_batch(batch)

            query_logits, context_logits = unwrapped_model(query_tokens,
                query_mask, query_types,
                torch.cat([context_tokens, neg_context_tokens]),
                torch.cat([context_mask, neg_context_mask]),
                torch.cat([context_types, neg_context_types]))

            retrieval_scores = torch.matmul(query_logits,
                                    torch.transpose(context_logits, 0, 1))

            if args.retriever_score_scaling:
                retrieval_scores = retrieval_scores / \
                    math.sqrt(args.hidden_size)

            local_batch_size = query_logits.shape[0]
            labels = torch.arange(local_batch_size).long().cuda()

            softmax_scores = F.softmax(retrieval_scores, dim=1)
            sorted_vals, sorted_indices = torch.topk(softmax_scores,
                                                     k=softmax_scores.shape[1],
                                                     sorted=True)

            def topk_accuracy(k):
                return torch.cuda.FloatTensor(
                    [sum([int(labels[i] in sorted_indices[i, :k]) for i in \
                        range(local_batch_size)])])

            def get_rank():
                return torch.cuda.FloatTensor(
                    [sum([torch.nonzero(labels[i] == sorted_indices[i])[0][0] \
                        for i in range(local_batch_size)])])

            topk_accs = [topk_accuracy(k) for k in \
                args.retriever_report_topk_accuracies]
            rank = get_rank()
            losses = average_losses_across_data_parallel_group([rank, \
                *topk_accs])

            # create stats_dict with retrieval loss and all specified
            # top-k accuracies
            topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \
                zip(args.retriever_report_topk_accuracies, losses[1:])}
            temp_stats_dict = dict(rank=losses[0], **topk_acc_dict)
            for k in stats_dict.keys():
                stats_dict[k] += temp_stats_dict[k]
            total += local_batch_size

    unwrapped_model.train()

    return stats_dict, total