File size: 9,894 Bytes
c2c125c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""ORQA finetuning/evaluation."""

from functools import partial
import sys

import math
import torch
import torch.nn.functional as F

from megatron import get_args, get_timers, get_tokenizer
from megatron import mpu, print_rank_0
from megatron.indexer import IndexBuilder
from megatron.model.biencoder_model import biencoder_model_provider
from megatron.utils import average_losses_across_data_parallel_group
from pretrain_ict import get_group_world_size_rank
from tasks.finetune_utils import finetune
from tasks.orqa.supervised.eval_utils import accuracy_func_provider
from tasks.orqa.supervised.eval_utils import process_batch, task_collate_fn
from tasks.orqa.evaluate_utils import ORQAEvaluator

# input_ is a 2D tensor
def check_and_append_tensor_for_gather(group, rank, world_size, input_):

    # gather the size of the first dimension of the tensor from all ranks
    current_length = input_.size()[0]
    first_dim = torch.tensor([[current_length]], 
        device=torch.cuda.current_device())
    input_list = [torch.empty_like(first_dim) for _ in range(world_size)]
    input_list[rank].copy_(first_dim)
    torch.distributed.all_gather(input_list, first_dim, group=group)
    all_input_list = torch.cat(input_list, dim=0).contiguous()
    max_length = torch.max(all_input_list)

    # if the size are different than the max, extend the tensor
    # accordingly
    if max_length > current_length:
        padding=tuple([0] * (input_.dim() * 2 - 1)) + \
            tuple([max_length - current_length])
        input_ = F.pad(input=input_, pad=padding)

    return input_

def orqa(Dataset):

    def cross_entropy_forward_step(batch, model):
        """Simple forward step with cross-entropy loss."""
        timers = get_timers()
        tokenizer = get_tokenizer()

        # Get the batch.
        timers('batch generator').start()
        try:
            batch_ = next(batch)
        except BaseException:
            batch_ = batch

        group, rank, world_size = get_group_world_size_rank()

        query_tokens, query_mask, query_types, query_pad_mask, \
        context_tokens, context_mask, context_types, context_pad_mask, \
        neg_context_tokens, neg_context_mask, neg_context_types, \
        reference = process_batch(batch_)

        timers('batch generator').stop()
        local_batch_size = query_tokens.shape[0]

        # Text representation of query and context
        query_list, context_list = [], []
        for i in range(local_batch_size):
            query_list.append(tokenizer.decode(query_tokens[i].tolist()))
            context_list.append(tokenizer.decode(context_tokens[i].tolist()))

        if neg_context_tokens is not None:
            neg_context_tokens = check_and_append_tensor_for_gather(group,
                rank, world_size, neg_context_tokens)
            neg_context_mask = check_and_append_tensor_for_gather(group,
                rank, world_size, neg_context_mask)
            neg_context_types = check_and_append_tensor_for_gather(group,
                rank, world_size, neg_context_types)

        if neg_context_tokens is not None:
            context_tokens = torch.cat([context_tokens, neg_context_tokens])
            context_mask = torch.cat([context_mask, neg_context_mask])
            context_types = torch.cat([context_types, neg_context_types])

        # Forward model.
        output_tensor = model(query_tokens, query_mask,
                                        query_types, context_tokens,
                                        context_mask, context_types)
        return output_tensor, partial(cross_entropy_loss_func, query_tokens, context_tokens)


    def cross_entropy_loss_func(query_tokens, context_tokens, output_tensor):
        args = get_args()

        local_batch_size = query_tokens.shape[0]
        group, rank, world_size = get_group_world_size_rank()
        # recall we assert that model_parallel_size == 1
        global_batch_size = world_size * local_batch_size

        query_logits, context_logits = output_tensor

        if world_size > 1:
            input_ = torch.empty_like(context_logits).copy_(\
                context_logits).detach_()
            tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
            tensor_list[rank].copy_(input_)
            torch.distributed.all_gather(tensor_list, input_, group=group)

            # Check if all-gather happens in order
            assert tensor_list[rank].sum().item() == \
                context_logits.sum().item()

            # Preserves the gradient
            tensor_list[rank] = context_logits
            all_context_logits = torch.cat(tensor_list, dim=0).contiguous()

            # Query tensors
            input_ = torch.empty_like(query_logits).copy_(\
                query_logits).detach_()
            tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
            tensor_list[rank].copy_(input_)
            torch.distributed.all_gather(tensor_list, input_, group=group)

            # Check if all-gather happens in order
            assert tensor_list[rank].sum().item() == query_logits.sum().item()

            # Preserves the gradient
            tensor_list[rank] = query_logits
            all_query_logits = torch.cat(tensor_list, dim=0).contiguous()
        else:
            all_query_logits = query_logits
            all_context_logits = context_logits

        retrieval_scores = torch.matmul(all_query_logits,
                            torch.transpose(all_context_logits, 0, 1))
        # Scaling the retrieval scores
        if args.retriever_score_scaling:
            retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)

        if args.train_with_neg:
            # if the world size is 3, local batch size is 4, and
            # local context size is 8, what we want is
            # labels = [0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19]
            labels = []
            local_context_size = context_tokens.shape[0]
            for i in range(world_size):
                j = i * local_context_size
                labels.extend(list(range(j, j + local_batch_size)))
            labels = torch.LongTensor(labels).cuda()
            assert len(labels) == global_batch_size
        else:
            labels = torch.arange(global_batch_size).long().cuda()

        # Cross-entropy loss.
        softmax_scores = F.log_softmax(retrieval_scores, dim=1)

        loss = F.nll_loss(softmax_scores, labels, reduction='mean')

        max_score, max_idxs = torch.max(softmax_scores, 1)
        correct_predictions_count = (max_idxs == labels).sum().float()

        # Reduce loss for logging.
        reduced_loss = average_losses_across_data_parallel_group([loss, \
            correct_predictions_count])

        # Loss scaling for correct losses in Supervised Retrieval
        loss = loss * mpu.get_data_parallel_world_size()

        return loss, {'lm loss': reduced_loss[0],
                      'correct_prediction_count': reduced_loss[1]}


    def train_valid_datasets_provider():
        """Build train and validation dataset."""
        args = get_args()
        tokenizer = get_tokenizer()

        train_dataset = Dataset('training',
                                args.train_data,
                                tokenizer,
                                args.retriever_seq_length,
                                evaluate=False)
        valid_dataset = Dataset('validation',
                                args.valid_data,
                                tokenizer,
                                args.retriever_seq_length,
                                evaluate=True)
        return train_dataset, valid_dataset

    def model_provider(pre_process=True, post_process=True):
        """Build the model."""
        args = get_args()
        print_rank_0('building retriever model for {} ...'.format(args.task))

        model = biencoder_model_provider(only_context_model=False,
                    only_query_model=False,
                    biencoder_shared_query_context_model=\
                    args.biencoder_shared_query_context_model,
                    pre_process=pre_process, post_process=post_process)

        return model

    def single_dataset_provider(datapath):
        args = get_args()
        tokenizer = get_tokenizer()

        name = datapath[0].split('/')[-1].split('.')[0]
        return Dataset(name,
                       datapath,
                       tokenizer,
                       args.retriever_seq_length,
                       evaluate=True)

    def metrics_func_provider():
        """Provide metrics callback function."""
        return accuracy_func_provider(single_dataset_provider)

    """Finetune/evaluate."""
    finetune(train_valid_datasets_provider,
             model_provider,
             forward_step=cross_entropy_forward_step,
             end_of_epoch_callback_provider=metrics_func_provider,
             task_collate_fn=task_collate_fn)

def main():
    args = get_args()

    if args.task == 'RET-FINETUNE-NQ':
        from tasks.orqa.supervised.data import NQSupervisedDataset as Dataset
    else:
        raise NotImplementedError('ORQA task {} is not implemented.'.format(
            args.task))

    orqa(Dataset)