File size: 11,317 Bytes
c2c125c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Finetune utilities."""

import torch
import torch.nn.functional as F
from megatron import get_args
from megatron import print_rank_0
from megatron import get_timers
from megatron import mpu, utils
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
from megatron.training import evaluate_and_print_results
from megatron.training import setup_model_and_optimizer
from megatron.training import train_step
from megatron.training import training_log
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import average_losses_across_data_parallel_group, print_params_min_max_norm
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module, ModelType


def process_batch(batch):
    """Process batch and produce inputs for the model."""
    images = batch[0].cuda().contiguous()
    labels = batch[1].cuda().contiguous()
    return images, labels


def build_data_loader(dataset, micro_batch_size,
                      num_workers, drop_last, shuffle):
    """Data loader. Note that batch-size is the local (per GPU) batch-size."""

    # Sampler.
    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    sampler = torch.utils.data.distributed.DistributedSampler(
        dataset, num_replicas=world_size, rank=rank,
        drop_last=drop_last, shuffle=shuffle
    )

    # Data loader. Note that batch size is the per GPU batch size.
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=micro_batch_size,
        sampler=sampler,
        shuffle=False,
        num_workers=num_workers,
        drop_last=drop_last,
        pin_memory=True,
    )

    return data_loader


def _build_infinite_size_dataloader(dataloader):
    """Build a looped dataloader with infinite size."""

    iterator = dataloader.__iter__()
    while True:
        try:
            yield iterator.__next__()
        except StopIteration:
            iterator = dataloader.__iter__()


def _build_train_valid_dataloaders(train_dataset, valid_dataset):
    """Traing and validation dataloaders."""
    args = get_args()

    print_rank_0('building train and validation dataloaders ...')
    # Training dataset.
    train_dataloader = build_data_loader(train_dataset, args.micro_batch_size,
                                         args.num_workers, False, True)
    # Set the training iterations.
    args.train_iters_per_epoch = len(train_dataloader)
    args.train_iters = args.epochs * args.train_iters_per_epoch
    # Validation dataset. For this dataset, we do not need to set up
    # shuffling so we can just use a simple infinite loop.
    valid_dataloader_ = build_data_loader(valid_dataset, args.micro_batch_size,
                                          args.num_workers, True,  False)
    valid_dataloader = _build_infinite_size_dataloader(valid_dataloader_)

    # Now that we've built the data loaders, set batch_size arguments
    # to the actual batch size the model will see for this dataset.
    # This is necessary so pipeline transfers know what size they are
    # and the LR schedule, which is based on samples seen, gets set
    # correctly.
    args.orig_micro_batch_size = args.micro_batch_size
    args.orig_global_batch_size = args.global_batch_size

    return train_dataloader, valid_dataloader


def _train(
    model,
    optimizer,
    opt_param_scheduler,
    forward_step,
    train_dataloader,
    valid_dataloader,
    end_of_epoch_callback,
    process_non_loss_data_func=None
):
    """Train the model."""
    args = get_args()
    timers = get_timers()

    # Turn on training mode which enables dropout.
    for m in model:
        m.train()

    # Tracking loss.
    losses_dict_sum = {}

    # Starting epoch and iteration
    start_epoch = args.iteration // args.train_iters_per_epoch
    start_iteration = args.iteration % args.train_iters_per_epoch
    iteration = args.iteration

    # Memory reporting flag.
    report_memory_flag = True

    # For each remaining epoch
    timers("interval-time").start()
    for epoch in range(start_epoch, args.epochs):
        print_rank_0("working on epoch {} ...".format(epoch + 1))

        # Set the data loader epoch to shuffle the index iterator.
        train_dataloader.sampler.set_epoch(args.seed + epoch)
        train_dataloader.dataset.set_epoch(epoch)

        # For all the batches in the dataset.
        for iteration_, batch in enumerate(train_dataloader):

            # Ignore the iterations before starting value
            if iteration_ < start_iteration:
                continue
            # Set to zero so the next epoch does not skip any batches.
            start_iteration = 0

            # Train for one step.
            losses_dict, skipped_iter, grad_norm, num_zeros_in_grad = train_step(
                forward_step, batch, model, optimizer, opt_param_scheduler
            )
            iteration += 1

            # Logging.
            params_norm = None

            report_memory_flag = training_log(
                losses_dict,
                losses_dict_sum,
                optimizer.param_groups[0]["lr"],
                iteration,
                optimizer.get_loss_scale().item(),
                report_memory_flag,
                skipped_iter,
                grad_norm,
                params_norm,
                num_zeros_in_grad
            )

            # Autoresume
            if args.adlr_autoresume and \
                    iteration % args.adlr_autoresume_interval == 0:
                check_adlr_autoresume_termination(iteration, model, optimizer,
                                                  opt_param_scheduler)

            # Checkpointing
            if args.save and args.save_interval and \
                    iteration % args.save_interval == 0:
                save_checkpoint(iteration, model, optimizer,
                                opt_param_scheduler)

            # Evaluation
            if args.eval_interval and iteration % args.eval_interval == 0:
                prefix = "iteration {}".format(iteration)
                evaluate_and_print_results(
                    prefix,
                    forward_step,
                    valid_dataloader,
                    model,
                    iteration,
                    process_non_loss_data_func,
                    False,
                )

        # Callback at the end of each epoch.
        if end_of_epoch_callback is not None:
            end_of_epoch_callback(model, epoch)


def finetune(
    train_valid_datasets_provider,
    model_provider,
    forward_step,
    model_type=ModelType.encoder_or_decoder,
    process_non_loss_data_func=None,
    end_of_epoch_callback_provider=None,
):
    """Main finetune function used across all tasks."""
    args = get_args()
    timers = get_timers()

    # Train and validation data loaders.
    timers("train/valid/test dataset/dataloder").start()
    if args.epochs > 0:
        train_dataset, valid_dataset = train_valid_datasets_provider()
        train_dataloader, valid_dataloader = _build_train_valid_dataloaders(
            train_dataset, valid_dataset
        )
    timers("train/valid/test dataset/dataloder").stop()

    # Build calback function.
    timers("callback function").start()
    end_of_epoch_callback = None
    if end_of_epoch_callback_provider is not None:
        end_of_epoch_callback = end_of_epoch_callback_provider()
    timers("callback function").stop()

    # Build model, optimizer and learning rate scheduler.
    timers("model and optimizer").start()
    model, optimizer, opt_param_scheduler = \
        setup_model_and_optimizer(
            model_provider,
            model_type,
            scale_lr_cond=lambda name, param: ".head." in name,
            lr_mult=args.head_lr_mult)
    timers("model and optimizer").stop()

    # If pretrained checkpoint is provided and we have not trained for
    # any iteration (i.e., iteration is zero), then load the pretrained
    # checkpoint.
    timers("pretrained checkpoint").start()
    if args.iteration == 0 and args.pretrained_checkpoint is not None:
        if args.pretrained_checkpoint_type == 'default':
            original_load = args.load
            args.load = args.pretrained_checkpoint
            _ = load_checkpoint(model, None, None, strict=False)
            args.load = original_load
        elif args.pretrained_checkpoint_type == 'external':
            unwrap_model = utils.unwrap_model(model)
            state_dict = torch.load(args.pretrained_checkpoint,
                                    map_location="cpu")
            unwrap_model[0].module.backbone.load_state_dict(state_dict,
                                                            strict=False)
        elif args.pretrained_checkpoint_type == 'constrastive':
            unwrap_model = utils.unwrap_model(model)
            state_dict = torch.load(args.pretrained_checkpoint,
                                    map_location="cpu")
            state_dict = state_dict["model"]
            state_dict = {k.replace("teacher.backbone.", ""): v
                          for k, v in state_dict.items()
                          if k.startswith("teacher.backbone.")}
            unwrap_model[0].module.backbone.load_state_dict(state_dict,
                                                            strict=False)
        else:
            raise Exception("pretrained checkpoint type {} not supported".format(args.pretrained_checkpoint_type))

        # This is critical when only model is loaded. We should make sure
        # master parameters are also updated.
        optimizer.reload_model_params()

    timers("pretrained checkpoint").stop()

    # Print setup timing.
    print_rank_0("done with setups ...")
    timers.log(
        [
            "train/valid/test dataset/dataloder",
            "callback function",
            "model and optimizer",
            "pretrained checkpoint",
        ]
    )
    print_rank_0("training ...")

    # Finetune the model.
    if args.epochs > 0:
        _train(
            model,
            optimizer,
            opt_param_scheduler,
            forward_step,
            train_dataloader,
            valid_dataloader,
            end_of_epoch_callback,
            process_non_loss_data_func,
        )
    # Or just evaluate.
    else:
        if end_of_epoch_callback is not None:
            print_rank_0("evaluation only mode, setting epoch to -1")
            end_of_epoch_callback(model, epoch=-1)

    print_rank_0("done :-)")