File size: 4,825 Bytes
c2c125c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import random
import os
import math
import mmcv
import torch
import numpy as np
import torchvision.transforms as T
from torchvision import datasets
from torch.utils.data import Dataset
from megatron.data.autoaugment import ImageNetPolicy
from tasks.vision.segmentation.cityscapes import Cityscapes
import tasks.vision.segmentation.transforms as ET
from megatron.data.autoaugment import ImageNetPolicy
from megatron import get_args
from PIL import Image, ImageOps


class VitSegmentationJointTransform():
    def __init__(self, train=True, resolution=None):
        self.train = train
        if self.train:
            self.transform0 = ET.RandomSizeAndCrop(resolution)
            self.transform1 = ET.RandomHorizontallyFlip()

    def __call__(self, img, mask):
        if self.train:
            img, mask = self.transform0(img, mask)
            img, mask = self.transform1(img, mask)
        return img, mask


class VitSegmentationImageTransform():
    def __init__(self, train=True, resolution=None):
        args = get_args()
        self.train = train
        assert args.fp16 or args.bf16
        self.data_type = torch.half if args.fp16 else torch.bfloat16
        self.mean_std = args.mean_std
        if self.train:
            assert resolution is not None
            self.transform = T.Compose([
                ET.PhotoMetricDistortion(),
                T.ToTensor(),
                T.Normalize(*self.mean_std),
                T.ConvertImageDtype(self.data_type)
            ])
        else:
            self.transform = T.Compose([
                T.ToTensor(),
                T.Normalize(*self.mean_std),
                T.ConvertImageDtype(self.data_type)
            ])

    def __call__(self, input):
        output = self.transform(input)
        return output


class VitSegmentationTargetTransform():
    def __init__(self, train=True, resolution=None):
        self.train = train

    def __call__(self, input):
        output = torch.from_numpy(np.array(input, dtype=np.int32)).long()
        return output


class RandomSeedSegmentationDataset(Dataset):
    def __init__(self,
                 dataset,
                 joint_transform,
                 image_transform,
                 target_transform):

        args = get_args()
        self.base_seed = args.seed
        self.curr_seed = self.base_seed
        self.dataset = dataset
        self.joint_transform = joint_transform
        self.image_transform = image_transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.dataset)

    def set_epoch(self, epoch):
        self.curr_seed = self.base_seed + 100 * epoch

    def __getitem__(self, idx):
        seed = idx + self.curr_seed
        img, mask = self.dataset[idx]

        torch.manual_seed(seed)
        random.seed(seed)
        np.random.seed(seed)
        img, mask = self.joint_transform(img, mask)
        img = self.image_transform(img)
        mask = self.target_transform(mask)

        return img, mask


def build_cityscapes_train_valid_datasets(data_path, image_size):
    args = get_args()
    args.num_classes = Cityscapes.num_classes
    args.ignore_index = Cityscapes.ignore_index
    args.color_table = Cityscapes.color_table
    args.mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

    train_joint_transform = \
        VitSegmentationJointTransform(train=True, resolution=image_size)
    val_joint_transform = \
        VitSegmentationJointTransform(train=False, resolution=image_size)
    train_image_transform = \
        VitSegmentationImageTransform(train=True, resolution=image_size)
    val_image_transform = \
        VitSegmentationImageTransform(train=False, resolution=image_size)
    train_target_transform = \
        VitSegmentationTargetTransform(train=True, resolution=image_size)
    val_target_transform = \
        VitSegmentationTargetTransform(train=False, resolution=image_size)

    # training dataset
    train_data = Cityscapes(
        root=data_path[0],
        split='train',
        mode='fine',
        resolution=image_size
    )
    train_data = RandomSeedSegmentationDataset(
        train_data,
        joint_transform=train_joint_transform,
        image_transform=train_image_transform,
        target_transform=train_target_transform)

    # validation dataset
    val_data = Cityscapes(
        root=data_path[0],
        split='val',
        mode='fine',
        resolution=image_size
    )

    val_data = RandomSeedSegmentationDataset(
        val_data,
        joint_transform=val_joint_transform,
        image_transform=val_image_transform,
        target_transform=val_target_transform)

    return train_data, val_data


def build_train_valid_datasets(data_path, image_size):
    return build_cityscapes_train_valid_datasets(data_path, image_size)