File size: 9,165 Bytes
c2c125c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# coding=utf-8
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Vision-classification finetuning/evaluation."""
import numpy as np
import torch
import torch.nn.functional as F
from functools import partial
from megatron import get_args, get_timers
from megatron import mpu, print_rank_0, print_rank_last
from tasks.vision.finetune_utils import finetune
from tasks.vision.finetune_utils import build_data_loader
from megatron.utils import average_losses_across_data_parallel_group
from megatron.schedules import get_forward_backward_func
from tasks.vision.segmentation.data import build_train_valid_datasets
from tasks.vision.segmentation.seg_models import SegformerSegmentationModel
from megatron.model.vision.utils import resize
def calculate_iou(hist_data):
acc = np.diag(hist_data).sum() / hist_data.sum()
acc_cls = np.diag(hist_data) / hist_data.sum(axis=1)
acc_cls = np.nanmean(acc_cls)
divisor = hist_data.sum(axis=1) + hist_data.sum(axis=0) - \
np.diag(hist_data)
iu = np.diag(hist_data) / divisor
return iu, acc, acc_cls
def fast_hist(pred, gtruth, num_classes):
# mask indicates pixels we care about
mask = (gtruth >= 0) & (gtruth < num_classes)
# stretch ground truth labels by num_classes
# class 0 -> 0
# class 1 -> 19
# class 18 -> 342
#
# TP at 0 + 0, 1 + 1, 2 + 2 ...
#
# TP exist where value == num_classes*class_id + class_id
# FP = row[class].sum() - TP
# FN = col[class].sum() - TP
hist = np.bincount(num_classes * gtruth[mask].astype(int) + pred[mask],
minlength=num_classes ** 2)
hist = hist.reshape(num_classes, num_classes)
return hist
def segmentation():
def train_valid_datasets_provider():
"""Build train and validation dataset."""
args = get_args()
train_ds, valid_ds = build_train_valid_datasets(
data_path=args.data_path,
image_size=(args.img_h, args.img_w)
)
return train_ds, valid_ds
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
args = get_args()
model = SegformerSegmentationModel(num_classes=args.num_classes,
pre_process=pre_process,
post_process=post_process)
print_rank_0("model = {}".format(model))
return model
def process_batch(batch):
"""Process batch and produce inputs for the model."""
images = batch[0].cuda().contiguous()
masks = batch[1].cuda().contiguous()
return images, masks
def calculate_weight(masks, num_classes):
bins = torch.histc(masks, bins=num_classes, min=0.0, max=num_classes)
hist_norm = bins.float()/bins.sum()
hist = ((bins != 0).float() * (1. - hist_norm)) + 1.0
return hist
def cross_entropy_loss_func(images, masks, output_tensor,
non_loss_data=False):
args = get_args()
ignore_index = args.ignore_index
color_table = args.color_table
logits = output_tensor.contiguous().float()
logits = resize(logits, size=masks.shape[1:],
mode='bilinear', align_corners=False)
# Cross-entropy loss.
# weight = calculate_weight(masks, num_classes)
loss = F.cross_entropy(logits, masks, ignore_index=ignore_index)
if not non_loss_data:
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss, {'lm loss': averaged_loss[0]}
else:
seg_mask = logits.argmax(dim=1)
output_mask = F.embedding(seg_mask, color_table).permute(0, 3, 1, 2)
gt_mask = F.embedding(masks, color_table).permute(0, 3, 1, 2)
return torch.cat((images, output_mask, gt_mask), dim=2), loss
def _cross_entropy_forward_step(batch, model):
"""Simple forward step with cross-entropy loss."""
timers = get_timers()
# Get the batch.
timers("batch generator").start()
import types
if isinstance(batch, types.GeneratorType):
batch_ = next(batch)
else:
batch_ = batch
images, masks = process_batch(batch_)
timers("batch generator").stop()
# Forward model.
output_tensor = model(images)
return output_tensor, partial(cross_entropy_loss_func, images, masks)
def calculate_correct_answers(model, dataloader, epoch):
"""Calculate correct over total answers"""
forward_backward_func = get_forward_backward_func()
for m in model:
m.eval()
def loss_func(labels, output_tensor):
args = get_args()
logits = output_tensor
logits = resize(logits, size=labels.shape[1:],
mode='bilinear', align_corners=False)
loss_dict = {}
# Compute the correct answers.
probs = logits.contiguous().float().softmax(dim=1)
max_probs, preds = torch.max(probs, 1)
preds = preds.cpu().numpy()
performs = fast_hist(preds.flatten(),
labels.cpu().numpy().flatten(),
args.ignore_index)
loss_dict['performs'] = performs
return 0, loss_dict
# defined inside to capture output_predictions
def correct_answers_forward_step(batch, model):
try:
batch_ = next(batch)
except BaseException:
batch_ = batch
images, labels = process_batch(batch_)
# Forward model.
output_tensor = model(images)
return output_tensor, partial(loss_func, labels)
with torch.no_grad():
# For all the batches in the dataset.
performs = None
for _, batch in enumerate(dataloader):
loss_dicts = forward_backward_func(correct_answers_forward_step,
batch, model,
optimizer=None,
timers=None,
forward_only=True)
for loss_dict in loss_dicts:
if performs is None:
performs = loss_dict['performs']
else:
performs += loss_dict['performs']
for m in model:
m.train()
# Reduce.
if mpu.is_pipeline_last_stage():
performs_tensor = torch.cuda.FloatTensor(performs)
torch.distributed.all_reduce(performs_tensor,
group=mpu.get_data_parallel_group())
hist = performs_tensor.cpu().numpy()
iu, acc, acc_cls = calculate_iou(hist)
miou = np.nanmean(iu)
return iu, miou
def accuracy_func_provider():
"""Provide function that calculates accuracies."""
args = get_args()
train_ds, valid_ds = build_train_valid_datasets(
data_path=args.data_path,
image_size=(args.img_h, args.img_w)
)
dataloader = build_data_loader(
valid_ds,
args.micro_batch_size,
num_workers=args.num_workers,
drop_last=(mpu.get_data_parallel_world_size() > 1),
shuffle=False
)
def metrics_func(model, epoch):
print_rank_0("calculating metrics ...")
iou, miou = calculate_correct_answers(model, dataloader, epoch)
print_rank_last(
" >> |epoch: {}| overall: iou = {},"
"miou = {:.4f} %".format(epoch, iou, miou*100.0)
)
return metrics_func
def dump_output_data(data, iteration, writer):
for (output_tb, loss) in data:
# output_tb[output_tb < 0] = 0
# output_tb[output_tb > 1] = 1
writer.add_images("image-outputseg-realseg", output_tb,
global_step=None, walltime=None,
dataformats='NCHW')
"""Finetune/evaluate."""
finetune(
train_valid_datasets_provider,
model_provider,
forward_step=_cross_entropy_forward_step,
process_non_loss_data_func=dump_output_data,
end_of_epoch_callback_provider=accuracy_func_provider,
)
def main():
segmentation()
|