File size: 9,165 Bytes
c2c125c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# coding=utf-8
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Vision-classification finetuning/evaluation."""

import numpy as np
import torch
import torch.nn.functional as F
from functools import partial
from megatron import get_args, get_timers
from megatron import mpu, print_rank_0, print_rank_last
from tasks.vision.finetune_utils import finetune
from tasks.vision.finetune_utils import build_data_loader
from megatron.utils import average_losses_across_data_parallel_group
from megatron.schedules import get_forward_backward_func
from tasks.vision.segmentation.data import build_train_valid_datasets
from tasks.vision.segmentation.seg_models import SegformerSegmentationModel
from megatron.model.vision.utils import resize


def calculate_iou(hist_data):
    acc = np.diag(hist_data).sum() / hist_data.sum()
    acc_cls = np.diag(hist_data) / hist_data.sum(axis=1)
    acc_cls = np.nanmean(acc_cls)
    divisor = hist_data.sum(axis=1) + hist_data.sum(axis=0) - \
        np.diag(hist_data)
    iu = np.diag(hist_data) / divisor
    return iu, acc, acc_cls


def fast_hist(pred, gtruth, num_classes):
    # mask indicates pixels we care about
    mask = (gtruth >= 0) & (gtruth < num_classes)

    # stretch ground truth labels by num_classes
    #   class 0  -> 0
    #   class 1  -> 19
    #   class 18 -> 342
    #
    # TP at 0 + 0, 1 + 1, 2 + 2 ...
    #
    # TP exist where value == num_classes*class_id + class_id
    # FP = row[class].sum() - TP
    # FN = col[class].sum() - TP
    hist = np.bincount(num_classes * gtruth[mask].astype(int) + pred[mask],
                       minlength=num_classes ** 2)
    hist = hist.reshape(num_classes, num_classes)
    return hist


def segmentation():

    def train_valid_datasets_provider():
        """Build train and validation dataset."""
        args = get_args()

        train_ds, valid_ds = build_train_valid_datasets(
            data_path=args.data_path,
            image_size=(args.img_h, args.img_w)

        )
        return train_ds, valid_ds

    def model_provider(pre_process=True, post_process=True):
        """Build the model."""
        args = get_args()

        model = SegformerSegmentationModel(num_classes=args.num_classes,
                                           pre_process=pre_process,
                                           post_process=post_process)
        print_rank_0("model = {}".format(model))
        return model

    def process_batch(batch):
        """Process batch and produce inputs for the model."""
        images = batch[0].cuda().contiguous()
        masks = batch[1].cuda().contiguous()
        return images, masks

    def calculate_weight(masks, num_classes):
        bins = torch.histc(masks, bins=num_classes, min=0.0, max=num_classes)
        hist_norm = bins.float()/bins.sum()
        hist = ((bins != 0).float() * (1. - hist_norm)) + 1.0
        return hist

    def cross_entropy_loss_func(images, masks, output_tensor,
                                non_loss_data=False):
        args = get_args()
        ignore_index = args.ignore_index
        color_table = args.color_table
        logits = output_tensor.contiguous().float()
        logits = resize(logits, size=masks.shape[1:],
                        mode='bilinear', align_corners=False)
      
        # Cross-entropy loss.
        # weight = calculate_weight(masks, num_classes)
        loss = F.cross_entropy(logits, masks, ignore_index=ignore_index)

        if not non_loss_data:
            # Reduce loss for logging.
            averaged_loss = average_losses_across_data_parallel_group([loss])
            return loss, {'lm loss': averaged_loss[0]}
        else:
            seg_mask = logits.argmax(dim=1)
            output_mask = F.embedding(seg_mask, color_table).permute(0, 3, 1, 2)
            gt_mask = F.embedding(masks, color_table).permute(0, 3, 1, 2)
            return torch.cat((images, output_mask, gt_mask), dim=2), loss

    def _cross_entropy_forward_step(batch, model):
        """Simple forward step with cross-entropy loss."""
        timers = get_timers()

        # Get the batch.
        timers("batch generator").start()
        import types
        if isinstance(batch, types.GeneratorType):
            batch_ = next(batch)
        else:
            batch_ = batch
        images, masks = process_batch(batch_)
        timers("batch generator").stop()

        # Forward model.
        output_tensor = model(images)

        return output_tensor, partial(cross_entropy_loss_func, images, masks)

    def calculate_correct_answers(model, dataloader, epoch):
        """Calculate correct over total answers"""

        forward_backward_func = get_forward_backward_func()
        for m in model:
            m.eval()

        def loss_func(labels, output_tensor):
            args = get_args()
            logits = output_tensor
            logits = resize(logits, size=labels.shape[1:],
                            mode='bilinear', align_corners=False)

            loss_dict = {}
            # Compute the correct answers.
            probs = logits.contiguous().float().softmax(dim=1)
            max_probs, preds = torch.max(probs, 1)

            preds = preds.cpu().numpy()
            performs = fast_hist(preds.flatten(),
                                 labels.cpu().numpy().flatten(),
                                 args.ignore_index)
            loss_dict['performs'] = performs
            return 0, loss_dict

        # defined inside to capture output_predictions
        def correct_answers_forward_step(batch, model):
            try:
                batch_ = next(batch)
            except BaseException:
                batch_ = batch
            images, labels = process_batch(batch_)

            # Forward model.
            output_tensor = model(images)

            return output_tensor, partial(loss_func, labels)

        with torch.no_grad():
            # For all the batches in the dataset.
            performs = None
            for _, batch in enumerate(dataloader):
                loss_dicts = forward_backward_func(correct_answers_forward_step,
                                                   batch, model,
                                                   optimizer=None,
                                                   timers=None,
                                                   forward_only=True)
                for loss_dict in loss_dicts:
                    if performs is None:
                        performs = loss_dict['performs']
                    else:
                        performs += loss_dict['performs']

        for m in model:
            m.train()
        # Reduce.
        if mpu.is_pipeline_last_stage():
            performs_tensor = torch.cuda.FloatTensor(performs)
            torch.distributed.all_reduce(performs_tensor,
                                         group=mpu.get_data_parallel_group())
            hist = performs_tensor.cpu().numpy()
            iu, acc, acc_cls = calculate_iou(hist)
            miou = np.nanmean(iu)

            return iu, miou

    def accuracy_func_provider():
        """Provide function that calculates accuracies."""
        args = get_args()

        train_ds, valid_ds = build_train_valid_datasets(
            data_path=args.data_path,
            image_size=(args.img_h, args.img_w)
        )
        dataloader = build_data_loader(
            valid_ds,
            args.micro_batch_size,
            num_workers=args.num_workers,
            drop_last=(mpu.get_data_parallel_world_size() > 1),
            shuffle=False
        )

        def metrics_func(model, epoch):
            print_rank_0("calculating metrics ...")
            iou, miou = calculate_correct_answers(model, dataloader, epoch)
            print_rank_last(
                " >> |epoch: {}| overall: iou = {},"
                "miou = {:.4f} %".format(epoch, iou, miou*100.0)
            )
        return metrics_func

    def dump_output_data(data, iteration, writer):
        for (output_tb, loss) in data:
            # output_tb[output_tb < 0] = 0
            # output_tb[output_tb > 1] = 1
            writer.add_images("image-outputseg-realseg", output_tb,
                              global_step=None, walltime=None,
                              dataformats='NCHW')

    """Finetune/evaluate."""
    finetune(
        train_valid_datasets_provider,
        model_provider,
        forward_step=_cross_entropy_forward_step,
        process_non_loss_data_func=dump_output_data,
        end_of_epoch_callback_provider=accuracy_func_provider,
    )


def main():
    segmentation()