File size: 5,224 Bytes
c2c125c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding=utf-8
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import einops
import torch
import apex
import torch.nn.functional as F
from megatron import get_args
from megatron.model import LayerNorm
from megatron.model.module import MegatronModule
from megatron.model.vision.utils import resize


class SetrSegmentationHead(MegatronModule):
    def __init__(self, hidden_size, num_classes):
        super(SetrSegmentationHead, self).__init__()
        args = get_args()
        self.hidden_size = hidden_size
        self.num_classes = num_classes
        self.img_h = args.img_h
        self.img_w = args.img_w
        self.patch_dim = args.patch_dim

        self.layernorm = LayerNorm(hidden_size, eps=args.layernorm_epsilon)
        self.conv_0 = torch.nn.Conv2d(hidden_size, hidden_size,
                                      1, 1, bias=False)
        self.norm_0 = apex.parallel.SyncBatchNorm(hidden_size)
        self.conv_1 = torch.nn.Conv2d(hidden_size, num_classes, 1, 1)

    def to_2D(self, x):
        n, hw, c = x.shape
        h = self.img_h // self.patch_dim
        w = self.img_w // self.patch_dim
        assert(hw == h * w)
        x = x.transpose(1, 2).reshape(n, c, h, w)
        return x

    def forward(self, hidden_states):
        # [b c h w]
        hidden_states = self.layernorm(hidden_states)
        hidden_states = self.to_2D(hidden_states)

        hidden_states = self.conv_0(hidden_states)
        hidden_states = self.norm_0(hidden_states)
        hidden_states = torch.tanh(hidden_states)
        hidden_states = self.conv_1(hidden_states)

        # [b c h w]
        result = F.interpolate(hidden_states,
                               size=(self.img_h, self.img_w),
                               mode='bilinear')

        return result


class MLP(torch.nn.Module):
    """
    Linear Embedding
    """
    def __init__(self, input_dim=2048, embed_dim=768):
        super().__init__()
        self.proj = torch.nn.Linear(input_dim, embed_dim)

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)
        x = self.proj(x)
        return x


class SegformerSegmentationHead(MegatronModule):
    def __init__(self, feature_strides, in_channels,
                 embedding_dim, dropout_ratio):
        super(SegformerSegmentationHead, self).__init__()
        assert len(feature_strides) == len(in_channels)
        assert min(feature_strides) == feature_strides[0]
        args = get_args()
        self.feature_strides = feature_strides
        self.in_channels = in_channels
        self.embedding_dim = embedding_dim
        self.num_classes = args.num_classes
        self.dropout_ratio = dropout_ratio

        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = \
            self.in_channels

        self.linear_c4 = MLP(input_dim=c4_in_channels,
                             embed_dim=self.embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels,
                             embed_dim=self.embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels,
                             embed_dim=self.embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels,
                             embed_dim=self.embedding_dim)

        self.conv_fuse = torch.nn.Conv2d(self.embedding_dim*4,
                                         self.embedding_dim, 1, 1)
        self.norm = apex.parallel.SyncBatchNorm(self.embedding_dim)

        self.dropout = torch.nn.Dropout2d(self.dropout_ratio)
        self.linear_pred = torch.nn.Conv2d(self.embedding_dim,
                                           self.num_classes,
                                           kernel_size=1)

    def forward(self, inputs):
        c1, c2, c3, c4 = inputs

        ############## MLP decoder on C1-C4 ###########
        n, _, h, w = c4.shape

        _c4 = self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3])
        _c4 = resize(_c4, size=c1.size()[2:], mode='bilinear', align_corners=False)

        _c3 = self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3])
        _c3 = resize(_c3, size=c1.size()[2:], mode='bilinear', align_corners=False)

        _c2 = self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3])
        _c2 = resize(_c2, size=c1.size()[2:], mode='bilinear', align_corners=False)

        _c1 = self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3])

        _c = self.conv_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
        x = self.norm(_c)
        x = F.relu(x, inplace=True)
        x = self.dropout(x)
        x = self.linear_pred(x)

        return x