File size: 5,224 Bytes
c2c125c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# coding=utf-8
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import einops
import torch
import apex
import torch.nn.functional as F
from megatron import get_args
from megatron.model import LayerNorm
from megatron.model.module import MegatronModule
from megatron.model.vision.utils import resize
class SetrSegmentationHead(MegatronModule):
def __init__(self, hidden_size, num_classes):
super(SetrSegmentationHead, self).__init__()
args = get_args()
self.hidden_size = hidden_size
self.num_classes = num_classes
self.img_h = args.img_h
self.img_w = args.img_w
self.patch_dim = args.patch_dim
self.layernorm = LayerNorm(hidden_size, eps=args.layernorm_epsilon)
self.conv_0 = torch.nn.Conv2d(hidden_size, hidden_size,
1, 1, bias=False)
self.norm_0 = apex.parallel.SyncBatchNorm(hidden_size)
self.conv_1 = torch.nn.Conv2d(hidden_size, num_classes, 1, 1)
def to_2D(self, x):
n, hw, c = x.shape
h = self.img_h // self.patch_dim
w = self.img_w // self.patch_dim
assert(hw == h * w)
x = x.transpose(1, 2).reshape(n, c, h, w)
return x
def forward(self, hidden_states):
# [b c h w]
hidden_states = self.layernorm(hidden_states)
hidden_states = self.to_2D(hidden_states)
hidden_states = self.conv_0(hidden_states)
hidden_states = self.norm_0(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.conv_1(hidden_states)
# [b c h w]
result = F.interpolate(hidden_states,
size=(self.img_h, self.img_w),
mode='bilinear')
return result
class MLP(torch.nn.Module):
"""
Linear Embedding
"""
def __init__(self, input_dim=2048, embed_dim=768):
super().__init__()
self.proj = torch.nn.Linear(input_dim, embed_dim)
def forward(self, x):
x = x.flatten(2).transpose(1, 2)
x = self.proj(x)
return x
class SegformerSegmentationHead(MegatronModule):
def __init__(self, feature_strides, in_channels,
embedding_dim, dropout_ratio):
super(SegformerSegmentationHead, self).__init__()
assert len(feature_strides) == len(in_channels)
assert min(feature_strides) == feature_strides[0]
args = get_args()
self.feature_strides = feature_strides
self.in_channels = in_channels
self.embedding_dim = embedding_dim
self.num_classes = args.num_classes
self.dropout_ratio = dropout_ratio
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = \
self.in_channels
self.linear_c4 = MLP(input_dim=c4_in_channels,
embed_dim=self.embedding_dim)
self.linear_c3 = MLP(input_dim=c3_in_channels,
embed_dim=self.embedding_dim)
self.linear_c2 = MLP(input_dim=c2_in_channels,
embed_dim=self.embedding_dim)
self.linear_c1 = MLP(input_dim=c1_in_channels,
embed_dim=self.embedding_dim)
self.conv_fuse = torch.nn.Conv2d(self.embedding_dim*4,
self.embedding_dim, 1, 1)
self.norm = apex.parallel.SyncBatchNorm(self.embedding_dim)
self.dropout = torch.nn.Dropout2d(self.dropout_ratio)
self.linear_pred = torch.nn.Conv2d(self.embedding_dim,
self.num_classes,
kernel_size=1)
def forward(self, inputs):
c1, c2, c3, c4 = inputs
############## MLP decoder on C1-C4 ###########
n, _, h, w = c4.shape
_c4 = self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3])
_c4 = resize(_c4, size=c1.size()[2:], mode='bilinear', align_corners=False)
_c3 = self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3])
_c3 = resize(_c3, size=c1.size()[2:], mode='bilinear', align_corners=False)
_c2 = self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3])
_c2 = resize(_c2, size=c1.size()[2:], mode='bilinear', align_corners=False)
_c1 = self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3])
_c = self.conv_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
x = self.norm(_c)
x = F.relu(x, inplace=True)
x = self.dropout(x)
x = self.linear_pred(x)
return x
|