File size: 11,055 Bytes
1101a21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import json
import os
import sys
import types

import torch

def add_arguments(parser):
    group = parser.add_argument_group(title='Megatron loader')

    group.add_argument('--true-vocab-size', type=int, default=None,
                       help='original size of vocab, if specified will trim padding from embedding table.')
    group.add_argument('--vocab-file', type=str, default=None,
                       help='Path to the vocab file. If specified will use this to get vocab size and '
                       'trim padding from the embedding table.')
    group.add_argument('--megatron-path', type=str, default=None,
                       help='Base directory of deepspeed repository')

def _load_checkpoint(queue, args):

    # Search in directory above this
    sys.path.append(os.path.abspath(
        os.path.join(os.path.dirname(__file__),
                     os.path.pardir)))
    if args.megatron_path is not None:
        sys.path.insert(0, args.megatron_path)

    try:
        from megatron.arguments import parse_args, validate_args
        from megatron.global_vars import set_args, set_global_variables
        from megatron.checkpointing import load_args_from_checkpoint, load_checkpoint
        from megatron.model import ModelType, module
        from megatron import mpu, fused_kernels
    except ModuleNotFoundError:
        print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
        queue.put("exit")
        exit(1)

    # We want all arguments to come from us
    sys.argv = ['script.py',
                '--no-masked-softmax-fusion',
                '--no-bias-gelu-fusion',
                '--no-bias-dropout-fusion',
                '--use-cpu-initialization',
                '--micro-batch-size', '1',
                '--no-load-optim',
                '--no-load-rng',
                '--no-save-optim',
                '--no-save-rng',
                '--no-initialization',
                '--load', args.load_dir
                ]

    margs = parse_args()
    margs = load_args_from_checkpoint(margs)

    # Arguments do sanity checks on the world size, but we don't care,
    # so trick it into thinking we are plenty of processes
    margs.world_size = margs.tensor_model_parallel_size * margs.pipeline_model_parallel_size

    margs = validate_args(margs)

    def check_for_arg(arg_name):
        if getattr(margs, arg_name, None) is None:
            print(f"Checkpoint does not specify the argument {arg_name}. Exiting.")
            print(f"Arguments: {margs}")
            queue.put("exit")
            exit(1)

    check_for_arg('tensor_model_parallel_size')
    check_for_arg('pipeline_model_parallel_size')
    check_for_arg('num_layers')
    check_for_arg('hidden_size')
    check_for_arg('seq_length')
    check_for_arg('num_attention_heads')
    check_for_arg('max_position_embeddings')
    check_for_arg('tokenizer_type')
    check_for_arg('iteration')
    check_for_arg('bert_binary_head')
    check_for_arg('params_dtype')

    # Determine how to make our models
    if args.model_type == 'GPT':
        from pretrain_gpt import model_provider
        margs.model_type = ModelType.encoder_or_decoder
    elif args.model_type == 'BERT':
        from pretrain_bert import model_provider
        margs.model_type = ModelType.encoder_or_decoder
    else:
        raise Exception(f'unrecognized model type: {args.model_type}')

    # supress warning about torch.distributed not being initialized
    module.MegatronModule.embedding_warning_printed = True

    consumed_train_samples = None
    consumed_valid_samples = None
    def get_models(count, dtype, pre_process, post_process):
        nonlocal consumed_train_samples
        nonlocal consumed_valid_samples
        models = []
        for rank in range(count):
            mpu.initialize.set_tensor_model_parallel_rank(rank)
            model_ = [model_provider(pre_process, post_process).to(dtype)]
            margs.consumed_train_samples = 0
            margs.consumed_valid_samples = 0
            load_checkpoint(model_, None, None)
            assert(len(model_) == 1)
            model_ = model_[0]
            if consumed_train_samples is not None:
                assert(margs.consumed_train_samples == consumed_train_samples)
            else:
                consumed_train_samples = margs.consumed_train_samples
            if consumed_valid_samples is not None:
                assert(margs.consumed_valid_samples == consumed_valid_samples)
            else:
                consumed_valid_samples = margs.consumed_valid_samples
            models.append(model_)
        return models

    if margs.num_layers_per_virtual_pipeline_stage is not None:
        print("Model with an interleaved pipeline schedule are not yet supported.")
        queue.put("exit")
        exit(1)

    set_global_variables(margs)
    mpu.initialize.set_tensor_model_parallel_world_size(margs.tensor_model_parallel_size)
    mpu.initialize.set_pipeline_model_parallel_world_size(margs.pipeline_model_parallel_size)
    fused_kernels.load(margs)

    # Get true (non-padded) vocab size
    if args.true_vocab_size is not None:
        true_vocab_size = args.true_vocab_size
    elif args.vocab_file is not None:
        vocab = json.load(open(args.vocab_file))
        true_vocab_size = len(vocab)
        if args.true_vocab_size is not None and true_vocab_size != args.true_vocab_size:
            print("Both --true-vocab-size and --vocab-file specified and the vocab size does not match, aborting.")
            queue.put("exit")
            exit(1)
    else:
        true_vocab_size = None

    # short aliases
    tp_size = margs.tensor_model_parallel_size
    pp_size = margs.pipeline_model_parallel_size

    # metadata
    md = types.SimpleNamespace()
    md.model_type = args.model_type
    md.num_layers = margs.num_layers
    md.hidden_size = margs.hidden_size
    md.seq_length = margs.seq_length
    md.num_attention_heads = margs.num_attention_heads
    md.max_position_embeddings = margs.max_position_embeddings
    md.tokenizer_type = margs.tokenizer_type
    md.iteration = margs.iteration
    md.params_dtype = margs.params_dtype
    md.bert_binary_head = margs.bert_binary_head
    md.previous_tensor_parallel_size = margs.tensor_model_parallel_size
    md.previous_pipeline_parallel_size = margs.pipeline_model_parallel_size
    md.true_vocab_size = true_vocab_size
    md.make_vocab_size_divisible_by = margs.make_vocab_size_divisible_by

    # Get first pipe stage
    mpu.initialize.set_pipeline_model_parallel_rank(0)
    post_process = pp_size == 1
    models = get_models(tp_size, md.params_dtype, True, post_process)

    md.consumed_train_samples = consumed_train_samples
    md.consumed_valid_samples = consumed_valid_samples
    queue.put(md)

    def queue_put(name, msg):
        print(f"sending {name}")
        msg["name"] = name
        queue.put(msg)

    # Send embeddings
    message = {
        "position embeddings": models[0].language_model.embedding.position_embeddings.weight.data,
        "word embeddings": torch.cat(
            [models[tp_rank].language_model.embedding.word_embeddings.weight.data for tp_rank in range(tp_size)],
            dim = 0)
    }

    queue_put("embeddings", message)

    total_layer_num = 0
    for pp_rank in range(pp_size):
        if pp_rank > 0:
            mpu.initialize.set_pipeline_model_parallel_rank(pp_rank)
            post_process = pp_rank == pp_size - 1
            models = get_models(tp_size, md.params_dtype, False, post_process)
        for layer_num in range(len(models[0].language_model.encoder.layers)):
            message = {}

            # Get non-parallel tensors from tp_rank 0
            layer = models[0].language_model.encoder.layers[layer_num]
            message["input layernorm weight"] = layer.input_layernorm.weight.data
            message["input layernorm bias"] = layer.input_layernorm.bias.data
            message["dense bias"] = layer.self_attention.dense.bias.data
            message["post layernorm weight"] = layer.post_attention_layernorm.weight.data
            message["post layernorm bias"] = layer.post_attention_layernorm.bias.data
            message["mlp l1 bias"] = layer.mlp.dense_4h_to_h.bias.data

            # Grab all parallel tensors for this layer
            qkv_weight = []
            qkv_bias = []
            dense_weight = []
            mlp_l0_weight = []
            mlp_l0_bias = []
            mlp_l1_weight = []
            for tp_rank, model in enumerate(models):
                layer = model.language_model.encoder.layers[layer_num]
                qkv_weight.append(layer.self_attention.query_key_value.weight.data)
                qkv_bias.append(layer.self_attention.query_key_value.bias.data)
                dense_weight.append(layer.self_attention.dense.weight.data)
                mlp_l0_weight.append(layer.mlp.dense_h_to_4h.weight.data)
                mlp_l0_bias.append(layer.mlp.dense_h_to_4h.bias.data)
                mlp_l1_weight.append(layer.mlp.dense_4h_to_h.weight.data)

            # concat them
            message["qkv weight"] = torch.cat(qkv_weight, dim=0)
            message["qkv bias"] = torch.cat(qkv_bias, dim=0)
            message["dense weight"] = torch.cat(dense_weight, dim=1)
            message["mlp l0 weight"] = torch.cat(mlp_l0_weight, dim=0)
            message["mlp l0 bias"] = torch.cat(mlp_l0_bias, dim=0)
            message["mlp l1 weight"] = torch.cat(mlp_l1_weight, dim=1)

            queue_put(f"transformer layer {total_layer_num}", message)

            total_layer_num = total_layer_num + 1

    # Send final layernorm from tp_rank 0
    message = {
        "weight": models[0].language_model.encoder.final_layernorm.weight.data,
        "bias": models[0].language_model.encoder.final_layernorm.bias.data
    }
    queue_put("final layernorm", message)

    # Send BERT lm head and binary head if it exists
    if md.model_type == 'BERT':
        print("Sending LM Pooler")
        message = {
            "weight": models[0].language_model.pooler.dense.weight.data,
            "bias": models[0].language_model.pooler.dense.bias.data
        }
        queue_put("pooler", message)

        message = {
            "dense weight": models[0].lm_head.dense.weight.data,
            "dense bias": models[0].lm_head.dense.bias.data,
            "layernorm weight": models[0].lm_head.layernorm.weight.data,
            "layernorm bias": models[0].lm_head.layernorm.bias.data
        }
        queue_put("lm head", message)

        if md.bert_binary_head:
            print("Sending BERT Binary head")
            queue.put("binary head")
            message = {
                "weight": models[0].binary_head.weight.data,
                "bias": models[0].binary_head.bias.data
            }
            queue_put("binary head", message)
    queue.put("done")

def load_checkpoint(queue, args):
    try:
        _load_checkpoint(queue, args)
    except:
        queue.put("exit")
        raise