File size: 14,346 Bytes
1101a21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Merge model parallel partitions."""
import os
import re
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
os.path.pardir)))
import torch
from megatron import mpu
from megatron.checkpointing import load_checkpoint, save_checkpoint
from megatron.checkpointing import ensure_directory_exists
from megatron.checkpointing import get_checkpoint_name
from megatron.checkpointing import get_checkpoint_version
from megatron.checkpointing import get_checkpoint_tracker_filename
from megatron.global_vars import set_global_variables, get_args
from megatron.global_vars import rebuild_tokenizer
def split_into_partitions(tensor, num_partitions, partition_dim, stride):
per_partition_size = mpu.utils.divide(tensor.size(partition_dim),
num_partitions)
per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)
partitions_list = torch.split(tensor,
per_partition_per_stride_size,
dim=partition_dim)
partitions = []
for i in range(num_partitions):
partition = torch.cat(partitions_list[i::num_partitions],
dim=partition_dim)
partitions.append(partition)
return partitions
def merge_partitions(merged, partitions, partition_dim, stride):
# Number and size of each partition.
num_partitions = len(partitions)
per_partition_size = None
for partition in partitions:
if per_partition_size is None:
per_partition_size = partition.size(partition_dim)
else:
assert per_partition_size == partition.size(partition_dim)
def concat_partitions(partitions_):
with torch.no_grad():
if (per_partition_size * num_partitions) == merged.size(
partition_dim):
torch.cat(partitions_, dim=partition_dim, out=merged)
else:
print(' ***WARNING*** sizes do not match. Will cut '
'the merged partitions by {} along dimension {} '
'to reduce the size from {} to {} ...'.format(
(per_partition_size * num_partitions) - \
merged.size(partition_dim), partition_dim,
per_partition_size * num_partitions,
merged.size(partition_dim)))
merged_ = torch.cat(partitions_, dim=partition_dim)
merged_split = torch.split(merged_, merged.size(partition_dim),
dim=partition_dim)
merged_ = merged_split[0]
assert merged_.size(partition_dim) == merged.size(partition_dim)
merged.data.copy_(merged_.data)
# If stride is 1, then do simple concatination.
if stride == 1:
concat_partitions(partitions)
return
# For none unity strides, first split based on stride and then group.
per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)
# Chunk and build a list.
chunks = None
for i, partition in enumerate(partitions):
chunk = torch.split(partition,
per_partition_per_stride_size,
dim=partition_dim)
if chunks is None:
chunks = [0]*(num_partitions*len(chunk))
chunks[i::num_partitions] = chunk
# Concatinate.
concat_partitions(chunks)
return
def get_model(model_type):
if model_type == 'BERT':
from pretrain_bert import model_provider
elif model_type == 'GPT':
from pretrain_gpt import model_provider
elif model_type == 'RACE':
from tasks.race.finetune import model_provider
elif model_type == ['MNLI', 'QQP']:
num_classes = 2
if model_type == 'MNLI':
num_classes = 3
from megatron.model.classification import Classification
def model_provider():
return Classification(num_classes=num_classes, num_tokentypes=2)
else:
raise Exception('unrecognized model type: {}'.format(model_type))
model = model_provider()
model = model.half()
return model
def get_parallel_checkpoint_name(path):
tracker_filename = get_checkpoint_tracker_filename(path)
iteration = 0
with open(tracker_filename, 'r') as f:
metastring = f.read().strip()
iteration = int(metastring)
assert iteration > 0
checkpoint_name = get_checkpoint_name(path, iteration)
return checkpoint_name, iteration
def test_split_merge():
print('testing split and merge ...')
#[QKV.ROW-COL]
tensor = torch.FloatTensor([[1.11, 1.12, 1.13, 1.14, 1.15],
[1.21, 1.22, 1.23, 1.24, 1.25],
[1.31, 1.32, 1.33, 1.34, 1.35],
[1.41, 1.42, 1.43, 1.44, 1.45],
[2.11, 2.12, 2.13, 2.14, 2.15],
[2.21, 2.22, 2.23, 2.24, 2.25],
[2.31, 2.32, 2.33, 2.34, 2.35],
[2.41, 2.42, 2.43, 2.44, 2.45],
[3.11, 3.12, 3.13, 3.14, 3.15],
[3.21, 3.22, 3.23, 3.24, 3.25],
[3.31, 3.32, 3.33, 3.34, 3.35],
[3.41, 3.42, 3.43, 3.44, 3.45]])
num_partitions = 2
partition_dim = 0
stride = 3
partitions = split_into_partitions(tensor, num_partitions,
partition_dim, stride)
merged = torch.zeros_like(tensor)
merge_partitions(merged, partitions, partition_dim, stride)
max_error = (merged - tensor).abs().max()
print(' > max error (should be zero): {}'.format(max_error))
def get_mp_merge_args(parser):
"""Provide extra arguments required for merging."""
group = parser.add_argument_group(title='mp merge')
group.add_argument('--model-type', type=str, required=True,
choices=['BERT', 'GPT', 'RACE', 'MNLI', 'QQP'],
help='Type of the mdoel.')
group.add_argument('--target-pipeline-model-parallel-size', type=int, default=1,
help='Degree of pipeline model parallelism in output model.')
return parser
def main():
# Arguments do sanity checks on the world size, but we don't care,
# so trick it into thinking we are plenty of processes
os.environ["WORLD_SIZE"] = f'{2**31}'
# Args
set_global_variables(extra_args_provider=get_mp_merge_args,
args_defaults = {'use_cpu_initialization': True,
'micro_batch_size': 1,
'no_load_optim': True,
'no_load_rng': True,
'no_save_optim': True,
'no_save_rng': True,
'save_interval': 1})
args = get_args()
if args.pipeline_model_parallel_size > 1:
print("Checkpoints with pipeline model parallelism are not currently supported.")
exit()
model_type = args.model_type
orig_tensor_model_parallel_size = args.tensor_model_parallel_size
args.tensor_model_parallel_size = 1
tokenizer = rebuild_tokenizer(args)
print('\n merging model parallel partitions ...')
print(' > number of partitions: {}'.format(orig_tensor_model_parallel_size))
print(' > checkpoint path: {}'.format(args.load))
print(' > model parameters:')
print(' number of tokens ................ {} '.format(
tokenizer.vocab_size))
print(' number of layers ................ {}'.format(args.num_layers))
print(' hidden size ..................... {}'.format(args.hidden_size))
print(' number of attention heads ....... {}'.format(
args.num_attention_heads))
print(' maximum position embeddings ..... {}'.format(
args.max_position_embeddings))
# Full model.
print('> building the full model ...')
mpu.initialize.set_tensor_model_parallel_world_size(1)
mpu.initialize.set_tensor_model_parallel_rank(0)
mpu.initialize.set_pipeline_model_parallel_world_size(1)
mpu.initialize.set_pipeline_model_parallel_rank(0)
merged_model = get_model(model_type)
# Build and load partitions.
partitions = []
iteration = 0
args.tensor_model_parallel_size = orig_tensor_model_parallel_size
tokenizer = rebuild_tokenizer(args)
mpu.initialize.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size)
for rank in range(args.tensor_model_parallel_size):
# Reset these since load_checkpoint asserts they are 0, but we are loading
# multiple checkpoints in the same process and they get set each time
args.consumed_train_samples = 0
args.consumed_valid_samples = 0
mpu.initialize.set_tensor_model_parallel_rank(rank)
checkpoint_name, iteration = get_parallel_checkpoint_name(args.load)
model_ = get_model(model_type)
print(f'> loading {checkpoint_name} ...')
load_checkpoint(model_, None, None)
print(f'> checkpoint version {get_checkpoint_version()}')
partitions.append(model_)
# Parameter generators so we can loop through them semiltaneouly.
merged_params_gen = merged_model.named_parameters()
partitions_params_gen = [partition.named_parameters()
for partition in partitions]
while True:
try:
# Get the params and check names.
name, merged_param = next(merged_params_gen)
print(' > working on {} ...'.format(name))
print(' merged type: {}, size: {}'.format(
merged_param.dtype, list(merged_param.size())))
partitions_param = []
for rank, partition_params_gen in enumerate(partitions_params_gen):
partition_name, partition_param = next(partition_params_gen)
assert partition_name == name
partitions_param.append(partition_param)
print(' partition {} type: {}, size: {}'.format(
rank, partition_param.dtype, list(partition_param.size())))
# For the non-parallel parameters, simply copy the rank 0 values.
if not hasattr(merged_param, 'tensor_model_parallel'):
print(' none-parallel parameter, simple copy from rank 0')
with torch.no_grad():
merged_param.data.copy_(partitions_param[0].data)
# For parallel parameters, merge the values
else:
dim = merged_param.partition_dim
stride = merged_param.partition_stride
print(f' parallel parameter merge with stride {stride} along '
f'dimention {dim}')
merge_partitions(merged_param,
partitions_param,
dim,
stride)
except StopIteration:
break
partitions = []
args.tensor_model_parallel_size = 1
args.pipeline_model_parallel_size = args.target_pipeline_model_parallel_size
assert args.num_layers % args.pipeline_model_parallel_size == 0, \
'num_layers must be divisible by target pipeline model parallel size'
layers_per_part = args.num_layers // args.pipeline_model_parallel_size
tokenizer = rebuild_tokenizer(args)
mpu.initialize.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size)
mpu.initialize.set_tensor_model_parallel_rank(0)
mpu.initialize.set_pipeline_model_parallel_world_size(args.pipeline_model_parallel_size)
# regex to parse out layer number from param name
layer_re = re.compile('layers\.([0-9]+)')
if args.pipeline_model_parallel_size > 1:
merged_params = {}
for name, merged_param in merged_model.named_parameters():
merged_params[name] = merged_param
for rank in range(args.pipeline_model_parallel_size):
mpu.initialize.set_pipeline_model_parallel_rank(rank)
model = get_model(model_type)
def update_layer_num(m):
# TODO! This assumes no interleaved pipeline execution
layer = int(m.group(1))
layer += rank * layers_per_part
return f'layers.{layer}'
for dst_name, partition_param in model.named_parameters():
if dst_name == "word_embeddings.weight":
# See comment in MegatronModule.initialize_word_embeddings()
src_name = "language_model.embedding.word_embeddings.weight"
else:
# Translate destination layer number (0-N for each partition)
# to source layer number (single-model layer number)
src_name = re.sub(layer_re, update_layer_num, dst_name)
print(f" > copying {src_name} to {dst_name} in rank {rank}'s model")
partition_param.data.copy_(merged_params[src_name].data)
partitions.append(model)
else:
partitions = [merged_model]
for rank, model in enumerate(partitions):
mpu.initialize.set_pipeline_model_parallel_rank(rank)
print(f"> saving rank {rank}'s model")
save_checkpoint(iteration, model, None, None)
print('done :-)')
if __name__ == '__main__':
main()
|