File size: 14,346 Bytes
1101a21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Merge model parallel partitions."""

import os
import re
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))

import torch

from megatron import mpu
from megatron.checkpointing import load_checkpoint, save_checkpoint
from megatron.checkpointing import ensure_directory_exists
from megatron.checkpointing import get_checkpoint_name
from megatron.checkpointing import get_checkpoint_version
from megatron.checkpointing import get_checkpoint_tracker_filename
from megatron.global_vars import set_global_variables, get_args
from megatron.global_vars import rebuild_tokenizer


def split_into_partitions(tensor, num_partitions, partition_dim, stride):

    per_partition_size = mpu.utils.divide(tensor.size(partition_dim),
                                          num_partitions)
    per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)

    partitions_list = torch.split(tensor,
                                  per_partition_per_stride_size,
                                  dim=partition_dim)

    partitions = []
    for i in range(num_partitions):
        partition = torch.cat(partitions_list[i::num_partitions],
                              dim=partition_dim)
        partitions.append(partition)

    return partitions


def merge_partitions(merged, partitions, partition_dim, stride):

    # Number and size of each partition.
    num_partitions = len(partitions)
    per_partition_size = None
    for partition in partitions:
        if per_partition_size is None:
            per_partition_size = partition.size(partition_dim)
        else:
            assert per_partition_size == partition.size(partition_dim)

    def concat_partitions(partitions_):
        with torch.no_grad():
            if (per_partition_size * num_partitions) == merged.size(
                    partition_dim):
                torch.cat(partitions_, dim=partition_dim, out=merged)
            else:
                print('     ***WARNING*** sizes do not match. Will cut '
                      'the merged partitions by {} along dimension {} '
                      'to reduce the size from {} to {} ...'.format(
                          (per_partition_size * num_partitions) - \
                          merged.size(partition_dim), partition_dim,
                          per_partition_size * num_partitions,
                          merged.size(partition_dim)))
                merged_ = torch.cat(partitions_, dim=partition_dim)
                merged_split = torch.split(merged_, merged.size(partition_dim),
                                           dim=partition_dim)
                merged_ = merged_split[0]
                assert merged_.size(partition_dim) == merged.size(partition_dim)
                merged.data.copy_(merged_.data)

    # If stride is 1, then do simple concatination.
    if stride == 1:
        concat_partitions(partitions)
        return

    # For none unity strides, first split based on stride and then group.
    per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)
    # Chunk and build a list.
    chunks = None
    for i, partition in enumerate(partitions):
        chunk = torch.split(partition,
                            per_partition_per_stride_size,
                            dim=partition_dim)

        if chunks is None:
            chunks = [0]*(num_partitions*len(chunk))
        chunks[i::num_partitions] = chunk

    # Concatinate.
    concat_partitions(chunks)

    return


def get_model(model_type):

    if model_type == 'BERT':
        from pretrain_bert import model_provider
    elif model_type == 'GPT':
        from pretrain_gpt import model_provider
    elif model_type == 'RACE':
        from tasks.race.finetune import model_provider
    elif model_type == ['MNLI', 'QQP']:
        num_classes = 2
        if model_type == 'MNLI':
            num_classes = 3
        from megatron.model.classification import Classification
        def model_provider():
            return Classification(num_classes=num_classes, num_tokentypes=2)
    else:
        raise Exception('unrecognized model type: {}'.format(model_type))

    model = model_provider()
    model = model.half()

    return model


def get_parallel_checkpoint_name(path):

    tracker_filename = get_checkpoint_tracker_filename(path)
    iteration = 0
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        iteration = int(metastring)
    assert iteration > 0
    checkpoint_name = get_checkpoint_name(path, iteration)

    return checkpoint_name, iteration


def test_split_merge():

    print('testing split and merge ...')

    #[QKV.ROW-COL]
    tensor = torch.FloatTensor([[1.11, 1.12, 1.13, 1.14, 1.15],
                                [1.21, 1.22, 1.23, 1.24, 1.25],
                                [1.31, 1.32, 1.33, 1.34, 1.35],
                                [1.41, 1.42, 1.43, 1.44, 1.45],
                                [2.11, 2.12, 2.13, 2.14, 2.15],
                                [2.21, 2.22, 2.23, 2.24, 2.25],
                                [2.31, 2.32, 2.33, 2.34, 2.35],
                                [2.41, 2.42, 2.43, 2.44, 2.45],
                                [3.11, 3.12, 3.13, 3.14, 3.15],
                                [3.21, 3.22, 3.23, 3.24, 3.25],
                                [3.31, 3.32, 3.33, 3.34, 3.35],
                                [3.41, 3.42, 3.43, 3.44, 3.45]])

    num_partitions = 2
    partition_dim = 0
    stride = 3
    partitions = split_into_partitions(tensor, num_partitions,
                                       partition_dim, stride)

    merged = torch.zeros_like(tensor)
    merge_partitions(merged, partitions, partition_dim, stride)

    max_error = (merged - tensor).abs().max()
    print('  > max error (should be zero): {}'.format(max_error))


def get_mp_merge_args(parser):
    """Provide extra arguments required for merging."""
    group = parser.add_argument_group(title='mp merge')

    group.add_argument('--model-type', type=str, required=True,
                       choices=['BERT', 'GPT', 'RACE', 'MNLI', 'QQP'],
                       help='Type of the mdoel.')
    group.add_argument('--target-pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism in output model.')

    return parser


def main():

    # Arguments do sanity checks on the world size, but we don't care,
    # so trick it into thinking we are plenty of processes
    os.environ["WORLD_SIZE"] = f'{2**31}'

    # Args
    set_global_variables(extra_args_provider=get_mp_merge_args,
                         args_defaults = {'use_cpu_initialization': True,
                                          'micro_batch_size': 1,
                                          'no_load_optim': True,
                                          'no_load_rng': True,
                                          'no_save_optim': True,
                                          'no_save_rng': True,
                                          'save_interval': 1})
    args = get_args()

    if args.pipeline_model_parallel_size > 1:
        print("Checkpoints with pipeline model parallelism are not currently supported.")
        exit()

    model_type = args.model_type
    orig_tensor_model_parallel_size = args.tensor_model_parallel_size
    args.tensor_model_parallel_size = 1
    tokenizer = rebuild_tokenizer(args)

    print('\n merging model parallel partitions ...')
    print(' > number of partitions: {}'.format(orig_tensor_model_parallel_size))
    print(' > checkpoint path: {}'.format(args.load))
    print(' > model parameters:')
    print('    number of tokens ................ {} '.format(
        tokenizer.vocab_size))
    print('    number of layers ................ {}'.format(args.num_layers))
    print('    hidden size ..................... {}'.format(args.hidden_size))
    print('    number of attention heads ....... {}'.format(
        args.num_attention_heads))
    print('    maximum position embeddings ..... {}'.format(
        args.max_position_embeddings))

    # Full model.
    print('> building the full model ...')
    mpu.initialize.set_tensor_model_parallel_world_size(1)
    mpu.initialize.set_tensor_model_parallel_rank(0)
    mpu.initialize.set_pipeline_model_parallel_world_size(1)
    mpu.initialize.set_pipeline_model_parallel_rank(0)
    merged_model = get_model(model_type)

    # Build and load partitions.
    partitions = []
    iteration = 0
    args.tensor_model_parallel_size = orig_tensor_model_parallel_size
    tokenizer = rebuild_tokenizer(args)
    mpu.initialize.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size)
    for rank in range(args.tensor_model_parallel_size):
        # Reset these since load_checkpoint asserts they are 0, but we are loading
        # multiple checkpoints in the same process and they get set each time
        args.consumed_train_samples = 0
        args.consumed_valid_samples = 0

        mpu.initialize.set_tensor_model_parallel_rank(rank)
        checkpoint_name, iteration = get_parallel_checkpoint_name(args.load)
        model_ = get_model(model_type)
        print(f'> loading {checkpoint_name} ...')
        load_checkpoint(model_, None, None)
        print(f'> checkpoint version {get_checkpoint_version()}')
        partitions.append(model_)

    # Parameter generators so we can loop through them semiltaneouly.
    merged_params_gen = merged_model.named_parameters()
    partitions_params_gen = [partition.named_parameters()
                             for partition in partitions]
    while True:
        try:

            # Get the params and check names.
            name, merged_param = next(merged_params_gen)
            print(' > working on {} ...'.format(name))
            print('     merged         type: {}, size: {}'.format(
                merged_param.dtype, list(merged_param.size())))
            partitions_param = []
            for rank, partition_params_gen in enumerate(partitions_params_gen):
                partition_name, partition_param = next(partition_params_gen)
                assert partition_name == name
                partitions_param.append(partition_param)
                print('     partition {}    type: {}, size: {}'.format(
                    rank, partition_param.dtype, list(partition_param.size())))

            # For the non-parallel parameters, simply copy the rank 0 values.
            if not hasattr(merged_param, 'tensor_model_parallel'):
                print('     none-parallel parameter, simple copy from rank 0')
                with torch.no_grad():
                    merged_param.data.copy_(partitions_param[0].data)
            # For parallel parameters, merge the values
            else:
                dim = merged_param.partition_dim
                stride = merged_param.partition_stride
                print(f'     parallel parameter merge with stride {stride} along '
                      f'dimention {dim}')
                merge_partitions(merged_param,
                                 partitions_param,
                                 dim,
                                 stride)

        except StopIteration:
            break

    partitions = []
    args.tensor_model_parallel_size = 1
    args.pipeline_model_parallel_size = args.target_pipeline_model_parallel_size

    assert args.num_layers % args.pipeline_model_parallel_size == 0, \
        'num_layers must be divisible by target pipeline model parallel size'
    layers_per_part = args.num_layers // args.pipeline_model_parallel_size

    tokenizer = rebuild_tokenizer(args)
    mpu.initialize.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size)
    mpu.initialize.set_tensor_model_parallel_rank(0)
    mpu.initialize.set_pipeline_model_parallel_world_size(args.pipeline_model_parallel_size)

    # regex to parse out layer number from param name
    layer_re = re.compile('layers\.([0-9]+)')

    if args.pipeline_model_parallel_size > 1:
        merged_params = {}
        for name, merged_param in merged_model.named_parameters():
            merged_params[name] = merged_param

        for rank in range(args.pipeline_model_parallel_size):
            mpu.initialize.set_pipeline_model_parallel_rank(rank)
            model = get_model(model_type)
            def update_layer_num(m):
                # TODO! This assumes no interleaved pipeline execution
                layer = int(m.group(1))
                layer += rank * layers_per_part
                return f'layers.{layer}'

            for dst_name, partition_param in model.named_parameters():
                if dst_name == "word_embeddings.weight":
                    # See comment in MegatronModule.initialize_word_embeddings()
                    src_name = "language_model.embedding.word_embeddings.weight"
                else:
                    # Translate destination layer number (0-N for each partition)
                    # to source layer number (single-model layer number)
                    src_name = re.sub(layer_re, update_layer_num, dst_name)
                print(f" > copying {src_name} to {dst_name} in rank {rank}'s model")
                partition_param.data.copy_(merged_params[src_name].data)

            partitions.append(model)
    else:
        partitions = [merged_model]

    for rank, model in enumerate(partitions):
        mpu.initialize.set_pipeline_model_parallel_rank(rank)
        print(f"> saving rank {rank}'s model")
        save_checkpoint(iteration, model, None, None)

    print('done :-)')


if __name__ == '__main__':

    main()