yuyan-10b / megatron /data /test /test_indexed_dataset.py
Shawn001's picture
Upload 131 files
23bd7af
raw
history blame
4.63 kB
# This file isn't really a formal automated test, it's just a place to
# put some code used during development and manual testing of
# indexed_dataset.
from megatron.data import indexed_dataset
from megatron.tokenizer import build_tokenizer
import argparse
import os
import sys
import torch
script_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(script_dir, "../../../"))
def test_indexed_dataset(args):
ds = indexed_dataset.make_dataset(args.data, args.dataset_impl)
tokenizer = build_tokenizer(args)
print(len(ds.doc_idx))
print(len(ds))
print(ds.doc_idx[-1])
if ds.supports_prefetch:
# just prefetch the whole thing in test (so assume it is small)
ds.prefetch(range(len(ds)))
if args.count > len(ds.doc_idx) - 1:
args.count = len(ds.doc_idx) - 1
for i in range(args.count):
start = ds.doc_idx[i]
end = ds.doc_idx[i + 1]
ids = ds[start:end]
print(f"Document {i}:")
print("--------------")
for s in ids:
assert len(s) > 0
l = s.data.tolist()
text = tokenizer.detokenize(l)
print(text)
print("---")
def test_indexed_dataset_get(args):
ds = indexed_dataset.make_dataset(args.data, args.dataset_impl)
tokenizer = build_tokenizer(args)
size = ds.sizes[0]
print(f"size: {size}")
full = ds.get(0)
print(full)
# print(tokenizer.detokenize(full.data.tolist()))
print("---")
end = ds.get(0, offset=size - 10)
print(end)
# print(tokenizer.detokenize(end.data.tolist()))
start = ds.get(0, length=10)
print(start)
# print(tokenizer.detokenize(start.data.tolist()))
part = ds.get(0, offset=2, length=8)
print(part)
# print(tokenizer.detokenize(part.data.tolist()))
# def test_albert_dataset(args):
# # tokenizer = FullBertTokenizer(args.vocab, do_lower_case=True)
# # idataset = indexed_dataset.make_dataset(args.data, args.dataset_impl)
# # ds = AlbertDataset(idataset, tokenizer)
# ds = AlbertDataset.from_paths(args.vocab, args.data, args.dataset_impl,
# args.epochs, args.max_num_samples,
# args.masked_lm_prob, args.seq_length,
# args.short_seq_prob, args.seed)
# truncated = 0
# total = 0
# for i, s in enumerate(ds):
# ids = s['text']
# tokens = ds.tokenizer.convert_ids_to_tokens(ids)
# print(tokens)
# if i >= args.count-1:
# exit()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, help='prefix to data files')
parser.add_argument('--dataset-impl', type=str, default='infer',
choices=['lazy', 'cached', 'mmap', 'infer'])
parser.add_argument('--count', type=int, default=10,
help='Number of samples/documents to print')
group = parser.add_argument_group(title='tokenizer')
group.add_argument('--tokenizer-type', type=str, required=True,
choices=['BertWordPieceLowerCase',
'GPT2BPETokenizer'],
help='What type of tokenizer to use.')
group.add_argument('--vocab-file', type=str, default=None,
help='Path to the vocab file')
group.add_argument('--merge-file', type=str, default=None,
help='Path to the BPE merge file (if necessary).')
parser.add_argument('--epochs', type=int, default=5,
help='Number of epochs to plan for')
parser.add_argument('--max-num-samples', type=int, default=None,
help='Maximum number of samples to plan for')
parser.add_argument('--masked-lm-prob', type=float, default=0.15,
help='probability of masking tokens')
parser.add_argument('--seq-length', type=int, default=512,
help='maximum sequence length')
parser.add_argument('--short-seq-prob', type=float, default=0.1,
help='probability of creating a short sequence')
parser.add_argument('--seed', type=int, default=1234,
help='random seed')
args = parser.parse_args()
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.tensor_model_parallel_size = 1
if args.dataset_impl == "infer":
args.dataset_impl = indexed_dataset.infer_dataset_impl(args.data)
# test_albert_dataset(args)
test_indexed_dataset_get(args)
if __name__ == "__main__":
main()