Shawn001's picture
Upload 131 files
23bd7af
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pathlib
import subprocess
from torch.utils import cpp_extension
# Setting this param to a list has a problem of generating different
# compilation commands (with diferent order of architectures) and
# leading to recompilation of fused kernels. Set it to empty string
# to avoid recompilation and assign arch flags explicity in
# extra_cuda_cflags below
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
def load(args):
# Check if cuda 11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = _get_cuda_bare_metal_version(
cpp_extension.CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append('-gencode')
cc_flag.append('arch=compute_80,code=sm_80')
# Build path
srcpath = pathlib.Path(__file__).parent.absolute()
buildpath = srcpath / 'build'
_create_build_dir(buildpath)
# Helper function to build the kernels.
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
return cpp_extension.load(
name=name,
sources=sources,
build_directory=buildpath,
extra_cflags=['-O3',],
extra_cuda_cflags=['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'--use_fast_math'] + extra_cuda_flags + cc_flag,
verbose=(args.rank == 0)
)
# ==============
# Fused softmax.
# ==============
if args.masked_softmax_fusion:
extra_cuda_flags = ['-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda']
# Upper triangular softmax.
sources=[srcpath / 'scaled_upper_triang_masked_softmax.cpp',
srcpath / 'scaled_upper_triang_masked_softmax_cuda.cu']
scaled_upper_triang_masked_softmax_cuda = _cpp_extention_load_helper(
"scaled_upper_triang_masked_softmax_cuda",
sources, extra_cuda_flags)
# Masked softmax.
sources=[srcpath / 'scaled_masked_softmax.cpp',
srcpath / 'scaled_masked_softmax_cuda.cu']
scaled_masked_softmax_cuda = _cpp_extention_load_helper(
"scaled_masked_softmax_cuda", sources, extra_cuda_flags)
# Softmax
sources=[srcpath / 'scaled_softmax.cpp',
srcpath / 'scaled_softmax_cuda.cu']
scaled_softmax_cuda = _cpp_extention_load_helper(
"scaled_softmax_cuda", sources, extra_cuda_flags)
# =================================
# Mixed precision fused layer norm.
# =================================
extra_cuda_flags = ['-maxrregcount=50']
sources=[srcpath / 'layer_norm_cuda.cpp',
srcpath / 'layer_norm_cuda_kernel.cu']
fused_mix_prec_layer_norm_cuda = _cpp_extention_load_helper(
"fused_mix_prec_layer_norm_cuda", sources, extra_cuda_flags)
# =================================
# Fused gradient accumulation to weight gradient computation of linear layer
# =================================
if args.gradient_accumulation_fusion:
sources=[srcpath / 'fused_weight_gradient_dense.cpp',
srcpath / 'fused_weight_gradient_dense.cu']
fused_dense_cuda = _cpp_extention_load_helper(
"fused_dense_cuda", sources, [])
def _get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def _create_build_dir(buildpath):
try:
os.mkdir(buildpath)
except OSError:
if not os.path.isdir(buildpath):
print(f"Creation of the build directory {buildpath} failed")