# coding=utf-8 | |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
###### BIAS GELU FUSION/ NO AUTOGRAD ################ | |
# 1/sqrt(2*pi)-> 0.3989423 | |
# 1/sqrt(2) -> 0.70710678 | |
# sqrt(2/pi) -> 0.79788456 | |
# this function is tanh approximation of gelu | |
# actual gelu is: | |
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) | |
def bias_gelu(bias, y): | |
x = bias + y | |
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) | |
# gradient of tanh approximation of gelu | |
# gradient of actual gelu is: | |
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) | |
def bias_gelu_back(g, bias, y): | |
x = bias + y | |
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) | |
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 | |
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) | |
return ff*g | |
class GeLUFunction(torch.autograd.Function): | |
# bias is an optional argument | |
def forward(ctx, input, bias): | |
ctx.save_for_backward(input, bias) | |
return bias_gelu(bias, input) | |
def backward(ctx, grad_output): | |
input, bias = ctx.saved_tensors | |
tmp = bias_gelu_back(grad_output, bias, input) | |
return tmp, tmp | |
bias_gelu_impl = GeLUFunction.apply | |