|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from megatron.model.enums import AttnMaskType |
|
|
|
|
|
class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function): |
|
""" |
|
Fused operation which performs following three operations in sequence |
|
1. Scale the tensor. |
|
2. Apply upper triangular mask (typically used in gpt models). |
|
3. Perform softmax. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, inputs, scale): |
|
import scaled_upper_triang_masked_softmax_cuda |
|
|
|
scale_t = torch.tensor([scale]) |
|
softmax_results = scaled_upper_triang_masked_softmax_cuda.forward( |
|
inputs, scale_t[0] |
|
) |
|
|
|
ctx.save_for_backward(softmax_results, scale_t) |
|
return softmax_results |
|
|
|
@staticmethod |
|
def backward(ctx, output_grads): |
|
import scaled_upper_triang_masked_softmax_cuda |
|
|
|
softmax_results, scale_t = ctx.saved_tensors |
|
input_grads = scaled_upper_triang_masked_softmax_cuda.backward( |
|
output_grads, softmax_results, scale_t[0] |
|
) |
|
|
|
return input_grads, None |
|
|
|
|
|
class ScaledMaskedSoftmax(torch.autograd.Function): |
|
""" |
|
Fused operation which performs following three operations in sequence |
|
1. Scale the tensor. |
|
2. Apply the mask. |
|
3. Perform softmax. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, inputs, mask, scale): |
|
import scaled_masked_softmax_cuda |
|
|
|
scale_t = torch.tensor([scale]) |
|
|
|
softmax_results = scaled_masked_softmax_cuda.forward(inputs, mask, scale_t[0]) |
|
ctx.save_for_backward(softmax_results, scale_t) |
|
return softmax_results |
|
|
|
@staticmethod |
|
def backward(ctx, output_grads): |
|
import scaled_masked_softmax_cuda |
|
|
|
softmax_results, scale_t = ctx.saved_tensors |
|
|
|
input_grads = scaled_masked_softmax_cuda.backward( |
|
output_grads, softmax_results, scale_t[0] |
|
) |
|
return input_grads, None, None |
|
|
|
|
|
class ScaledSoftmax(torch.autograd.Function): |
|
""" |
|
Fused operation which performs following two operations in sequence |
|
1. Scale the tensor. |
|
2. Perform softmax. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, inputs, scale): |
|
import scaled_softmax_cuda |
|
|
|
scale_t = torch.tensor([scale]) |
|
|
|
softmax_results = scaled_softmax_cuda.forward( |
|
inputs, scale_t[0] |
|
) |
|
ctx.save_for_backward(softmax_results, scale_t) |
|
return softmax_results |
|
|
|
@staticmethod |
|
def backward(ctx, output_grads): |
|
import scaled_softmax_cuda |
|
|
|
softmax_results, scale_t = ctx.saved_tensors |
|
|
|
input_grads = scaled_softmax_cuda.backward( |
|
output_grads, softmax_results, scale_t[0] |
|
) |
|
return input_grads, None, None |
|
|
|
|
|
class FusedScaleMaskSoftmax(nn.Module): |
|
""" |
|
fused operation: scaling + mask + softmax |
|
|
|
Arguments: |
|
input_in_fp16: flag to indicate if input in fp16 data format. |
|
input_in_bf16: flag to indicate if input in bf16 data format. |
|
attn_mask_type: attention mask type (pad or causal) |
|
scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion |
|
mask_func: mask function to be applied. |
|
softmax_in_fp32: if true, softmax in performed at fp32 precision. |
|
scale: scaling factor used in input tensor scaling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_in_fp16, |
|
input_in_bf16, |
|
attn_mask_type, |
|
scaled_masked_softmax_fusion, |
|
mask_func, |
|
softmax_in_fp32, |
|
scale, |
|
): |
|
super(FusedScaleMaskSoftmax, self).__init__() |
|
self.input_in_fp16 = input_in_fp16 |
|
self.input_in_bf16 = input_in_bf16 |
|
assert not ( |
|
self.input_in_fp16 and self.input_in_bf16 |
|
), "both fp16 and bf16 flags cannot be active at the same time." |
|
self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16 |
|
self.attn_mask_type = attn_mask_type |
|
self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion |
|
self.mask_func = mask_func |
|
self.softmax_in_fp32 = softmax_in_fp32 |
|
self.scale = scale |
|
|
|
assert ( |
|
self.scale is None or softmax_in_fp32 |
|
), "softmax should be in fp32 when scaled" |
|
|
|
def forward(self, input, mask): |
|
|
|
assert input.dim() == 4 |
|
|
|
if self.is_kernel_available(mask, *input.size()): |
|
return self.forward_fused_softmax(input, mask) |
|
else: |
|
return self.forward_torch_softmax(input, mask) |
|
|
|
def is_kernel_available(self, mask, b, np, sq, sk): |
|
attn_batches = b * np |
|
|
|
if ( |
|
self.scaled_masked_softmax_fusion |
|
and self.input_in_float16 |
|
and 16 < sk <= 4096 |
|
and sq % 4 == 0 |
|
and attn_batches % 4 == 0 |
|
): |
|
if 0 <= sk <= 4096: |
|
batch_per_block = self.get_batch_per_block(sq, sk, b, np) |
|
|
|
if self.attn_mask_type == AttnMaskType.causal: |
|
if attn_batches % batch_per_block == 0: |
|
return True |
|
else: |
|
if sq % batch_per_block == 0: |
|
return True |
|
return False |
|
|
|
def forward_fused_softmax(self, input, mask): |
|
b, np, sq, sk = input.size() |
|
scale = self.scale if self.scale is not None else 1.0 |
|
|
|
if self.attn_mask_type == AttnMaskType.causal: |
|
assert sq == sk, "causal mask is only for self attention" |
|
|
|
|
|
input = input.view(-1, sq, sk) |
|
probs = ScaledUpperTriangMaskedSoftmax.apply(input, scale) |
|
return probs.view(b, np, sq, sk) |
|
else: |
|
|
|
if mask is not None: |
|
return ScaledMaskedSoftmax.apply(input, mask, scale) |
|
else: |
|
return ScaledSoftmax.apply(input, scale) |
|
|
|
def forward_torch_softmax(self, input, mask): |
|
if self.input_in_float16 and self.softmax_in_fp32: |
|
input = input.float() |
|
|
|
if self.scale is not None: |
|
input = input * self.scale |
|
mask_output = self.mask_func(input, mask) if mask is not None else input |
|
probs = torch.nn.Softmax(dim=-1)(mask_output) |
|
|
|
if self.input_in_float16 and self.softmax_in_fp32: |
|
if self.input_in_fp16: |
|
probs = probs.half() |
|
else: |
|
probs = probs.bfloat16() |
|
|
|
return probs |
|
|
|
@staticmethod |
|
def get_batch_per_block(sq, sk, b, np): |
|
import scaled_masked_softmax_cuda |
|
|
|
return scaled_masked_softmax_cuda.get_batch_per_block(sq, sk, b, np) |
|
|