Shawn001's picture
Upload 131 files
23bd7af
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron optimizer."""
from abc import ABC
from abc import abstractmethod
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from megatron import get_timers
from megatron import mpu
from megatron import print_rank_0
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
from megatron.utils import unwrap_model
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
def _zero_grad_group_helper(group, set_to_none):
"""Zero out the gradient for a group of parameters.
Note: copied from torch.optim.optimizer."""
for param in group:
if param.grad is not None:
if set_to_none:
param.grad = None
else:
if param.grad.grad_fn is not None:
param.grad.detach_()
else:
param.grad.requires_grad_(False)
param.grad.zero_()
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
"""Use multi-tensor-applier to copy values from one list to another.
We don't have a blfoat16 implementation so for now if the overflow_buf
is not provided, we default back to simple loop copy to be compatible
with bfloat16."""
if overflow_buf:
overflow_buf.fill_(0)
# Scaling with factor `1.0` is equivalent to copy.
multi_tensor_applier(amp_C.multi_tensor_scale,
overflow_buf,
[this, that],
1.0)
else:
for this_, that_ in zip(this, that):
that_.copy_(this_)
class MegatronOptimizer(ABC):
def __init__(self, optimizer, clip_grad,
log_num_zeros_in_grad,
params_have_main_grad,
use_contiguous_buffers_in_local_ddp,
models):
"""Input optimizer is the base optimizer for example Adam."""
self.optimizer = optimizer
assert self.optimizer, 'no optimizer is provided.'
# Set gradient clipping and logging params.
self.clip_grad = clip_grad
self.log_num_zeros_in_grad = log_num_zeros_in_grad
self.params_have_main_grad = params_have_main_grad
self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
# 'models' are retained for access to the contiguous grad buffers.
# (see distributed optimizer)
self.models = models
if self.use_contiguous_buffers_in_local_ddp:
assert self.params_have_main_grad, \
"use of contiguous buffer requires that params have main grad"
def get_parameters(self):
params = []
for param_group in self.optimizer.param_groups:
for param in param_group['params']:
params.append(param)
return params
def get_main_grads_for_grad_norm(self):
# Filter parameters based on:
# - grad should not be none
# - parameter should not be shared
# - should not be a replica due to tensor model parallelism
params = self.get_parameters()
grads_for_norm = []
for param in params:
grad = param.grad
grad_not_none = grad is not None
is_not_shared = param_is_not_shared(param)
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
if grad_not_none and is_not_shared and is_not_tp_duplicate:
grads_for_norm.append(grad)
return grads_for_norm
def get_model_parallel_group(self):
"""Default returned here, but the distributed optimizer overrides this."""
return mpu.get_model_parallel_group()
def clip_grad_norm(self, clip_grad):
params = self.get_parameters()
grads_for_norm = self.get_main_grads_for_grad_norm()
return clip_grad_norm_fp32(
params, grads_for_norm, clip_grad,
model_parallel_group=self.get_model_parallel_group())
def count_zeros(self):
params = self.get_parameters()
return count_zeros_fp32(params,
model_parallel_group=self.get_model_parallel_group())
@abstractmethod
def zero_grad(self, set_to_none=True):
pass
@abstractmethod
def get_loss_scale(self):
"""The output should be a cuda tensor of size 1."""
pass
def scale_loss(self, loss):
"""Simple scaling."""
return self.get_loss_scale() * loss
@abstractmethod
def reload_model_params(self):
"""Refreshes any internal state from the current model parameters.
Call whenever the parameters are changed outside of the optimizer.
For example, when we load a model from a checkpoint without loading
the optimizer, the model parameters are updated but for fp16 optimizer
with main parameters, the main parameters need to also be updated."""
pass
@abstractmethod
def state_dict(self):
pass
@abstractmethod
def load_state_dict(self, state_dict):
pass
# Promote state so it can be retrieved or set via
# "optimizer_instance.state"
def _get_state(self):
return self.optimizer.state
def _set_state(self, value):
self.optimizer.state = value
state = property(_get_state, _set_state)
# Promote param_groups so it can be retrieved or set via
# "optimizer_instance.param_groups"
# (for example, to adjust the learning rate)
def _get_param_groups(self):
return self.optimizer.param_groups
def _set_param_groups(self, value):
self.optimizer.param_groups = value
param_groups = property(_get_param_groups, _set_param_groups)
@abstractmethod
def step(self, args, timers):
pass
def gather_model_params(self, args, timers):
"""
For the case of a non-distributed-optimizer, there is nothing to
do here.
"""
pass
def allreduce_word_embedding_grads(self, args):
"""
All-reduce word embedding grads.
Reduce grads across first and last stages to ensure that word_embeddings
parameters stay in sync. This should only run for models that support
pipelined model parallelism (BERT and GPT-2).
"""
if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
mpu.get_pipeline_model_parallel_world_size() > 1:
if mpu.is_pipeline_first_stage(ignore_virtual=True):
unwrapped_model = self.models[0]
elif mpu.is_pipeline_last_stage(ignore_virtual=True):
unwrapped_model = self.models[-1]
else: # We do not support the interleaved schedule for T5 yet.
unwrapped_model = self.models[0]
unwrapped_model = unwrap_model(
unwrapped_model, (torchDDP, LocalDDP, Float16Module))
if unwrapped_model.share_word_embeddings:
word_embeddings_weight = unwrapped_model.word_embeddings_weight()
if args.DDP_impl == 'local':
grad = word_embeddings_weight.main_grad
else:
grad = word_embeddings_weight.grad
torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
def allreduce_position_embedding_grads(self, args):
"""
All-reduce position_embeddings grad across first (encoder) and
split (decoder) stages to ensure that position embeddings parameters
stay in sync. This should only run for T5 models with pipeline
parallelism.
"""
if mpu.is_rank_in_position_embedding_group() and \
mpu.get_pipeline_model_parallel_world_size() > 1 and \
args.pipeline_model_parallel_split_rank is not None:
unwrapped_model = self.models[0]
unwrapped_model = unwrap_model(
unwrapped_model, (torchDDP, LocalDDP, Float16Module))
assert args.DDP_impl == 'local', \
'T5 model is only supported with local DDP mode'
grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
def allreduce_embedding_grads(self, args):
"""All-reduce both word and position embeddings."""
self.allreduce_word_embedding_grads(args)
self.allreduce_position_embedding_grads(args)
def allreduce_layernorm_grads(self, args):
"""All-reduce layernorm grads (for sequence parallelism)."""
# All-reduce layernorm parameters across model parallel nodes
# when sequence parallelism is used
if mpu.get_tensor_model_parallel_world_size() > 1 and \
args.sequence_parallel:
grads = []
for model_module in self.models:
unwrapped_model = unwrap_model(
model_module, (torchDDP, LocalDDP, Float16Module))
for param in unwrapped_model.parameters():
if getattr(param, 'sequence_parallel', False):
grad = param.main_grad if args.DDP_impl == 'local' else param.grad
grads.append(grad.data)
coalesced = _flatten_dense_tensors(grads)
torch.distributed.all_reduce(
coalesced, group=mpu.get_tensor_model_parallel_group())
for buf, synced in zip(grads, _unflatten_dense_tensors(
coalesced, grads)):
buf.copy_(synced)
def reduce_model_grads(self, args, timers):
"""All-reduce all grads, and all-reduce embeddings."""
# All-reduce layer-norm grads (for sequence parallelism).
timers('backward-layernorm-all-reduce').start()
self.allreduce_layernorm_grads(args)
timers('backward-layernorm-all-reduce').stop()
# All-reduce if needed.
if args.DDP_impl == 'local':
timers('backward-params-all-reduce').start()
for model in self.models:
model.allreduce_gradients()
timers('backward-params-all-reduce').stop()
# All-reduce embedding grads.
timers('backward-embedding-all-reduce').start()
self.allreduce_embedding_grads(args)
timers('backward-embedding-all-reduce').stop()
class MixedPrecisionOptimizer(MegatronOptimizer):
"""Base class for both the float-16 and the distributed optimizer.
Arguments:
optimizer: base optimizer such as Adam or SGD
clip_grad: clip gradeints with this global L2 norm. Note
that clipping is ignored if clip_grad == 0
log_num_zeros_in_grad: return number of zeros in the gradients.
params_have_main_grad: flag indicating if parameters have
a `main_grad` field. If this is set, we are assuming
that the model parameters are store in the `main_grad`
field instead of the typical `grad` field. This happens
for the DDP cases where there is a continuous buffer
holding the gradients. For example for bfloat16, we want
to do gradient accumulation and all-reduces in float32
and as a result we store those gradients in the main_grad.
Note that main grad is not necessarily in float32.
use_contiguous_buffers_in_local_ddp: if true, the local DDP model
is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16.
grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have
a constnat gradient scaler. Also for `bf16 = False`, we
always require a grad scaler.
models: list of models (i.e., the virtual pipelining models). This
is used by the distributed optimizer for mapping parameters.
"""
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler,
models):
super().__init__(
optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
models)
self.fp16 = fp16
self.bf16 = bf16
self.grad_scaler = grad_scaler
# None grad scaler is only supported for bf16.
if self.grad_scaler is None:
assert not self.fp16, 'fp16 expects a grad scaler.'
# Tensor used to determine if a nan/if has happend.
# Any non-zero value indicates inf/nan.
# Note that we keep this for the cases that grad scaler is none.
# We still record nan/inf if we have a bfloat16 with a grad scaler.
if self.grad_scaler:
self.found_inf = torch.cuda.FloatTensor([0.0])
# Dummy tensor needed for apex multi-apply tensor.
# For bfloat, we don't have multi-tensor apply and for now
# we set it to none so the multi-tensor apply gets ignored.
if bf16:
self._dummy_overflow_buf = None
else:
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
# In case grad scaler is not passed, define the unity scale.
if self.grad_scaler is None:
self._scale_one = torch.cuda.FloatTensor([1.0])
def get_loss_scale(self):
if self.grad_scaler is None:
return self._scale_one
return self.grad_scaler.scale
def reload_model_params(self):
self._copy_model_params_to_main_params()
def _unscale_main_grads_and_check_for_nan(self):
# Collect main grads.
main_grads = self._collect_main_grad_data_for_unscaling()
# Reset found inf.
self.found_inf.fill_(0.0)
# Unscale and set found inf/nan
torch._amp_foreach_non_finite_check_and_unscale_(
main_grads, self.found_inf, self.grad_scaler.inv_scale)
# Update across all model parallel instances.
torch.distributed.all_reduce(self.found_inf,
op=torch.distributed.ReduceOp.MAX,
group=self.get_model_parallel_group())
# Check for nan.
found_inf_flag = (self.found_inf.item() > 0)
return found_inf_flag
@torch.no_grad()
def step(self, args, timers):
# Copy gradients from model params to main params.
timers('optimizer-copy-to-main-grad').start()
self._copy_model_grads_to_main_grads()
timers('optimizer-copy-to-main-grad').stop()
# Do unscale, check for inf, and update grad scaler only for
# the case that grad scaler is provided.
if self.grad_scaler:
# Unscale and check for inf/nan.
timers('optimizer-unscale-and-check-inf').start()
found_inf_flag = self._unscale_main_grads_and_check_for_nan()
timers('optimizer-unscale-and-check-inf').stop()
# We are done with scaling gradients
# so we can update the loss scale.
self.grad_scaler.update(found_inf_flag)
# If we found inf/nan, skip the update.
if found_inf_flag:
return False, None, None
# Clip the main gradients.
timers('optimizer-clip-main-grad').start()
grad_norm = None
if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad)
timers('optimizer-clip-main-grad').stop()
# Count the zeros in the grads.
timers('optimizer-count-zeros').start()
num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None
timers('optimizer-count-zeros').stop()
# Step the optimizer.
timers('optimizer-inner-step').start()
self.optimizer.step()
timers('optimizer-inner-step').stop()
# Update params from main params.
timers('optimizer-copy-main-to-model-params').start()
self._copy_main_params_to_model_params()
timers('optimizer-copy-main-to-model-params').stop()
# Successful update.
return True, grad_norm, num_zeros_in_grad
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
"""Float16 optimizer for fp16 and bf16 data types.
Arguments:
optimizer: base optimizer such as Adam or SGD
clip_grad: clip gradeints with this global L2 norm. Note
that clipping is ignored if clip_grad == 0
log_num_zeros_in_grad: return number of zeros in the gradients.
params_have_main_grad: flag indicating if parameters have
a `main_grad` field. If this is set, we are assuming
that the model parameters are store in the `main_grad`
field instead of the typical `grad` field. This happens
for the DDP cases where there is a continuous buffer
holding the gradients. For example for bfloat16, we want
to do gradient accumulation and all-reduces in float32
and as a result we store those gradients in the main_grad.
Note that main grad is not necessarily in float32.
use_contiguous_buffers_in_local_ddp: if true, the local DDP model
is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16.
grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have
a constnat gradient scaler. Also for `bf16 = False`, we
always require a grad scaler.
models: list of models (i.e., the virtual pipelining models). This
is used by the distributed optimizer for mapping parameters.
"""
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models):
super().__init__(
optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models)
# ======================
# main parameter stuff
# ======================
# Three groups of parameters:
# float16_groups: original float16 parameters
# fp32_from_float16_groups: fp32 copy of float16 parameters
# fp32_from_fp32_groups: original fp32 parameters
self.float16_groups = []
self.fp32_from_float16_groups = []
self.fp32_from_fp32_groups = []
# For all the groups in the original optimizer:
for param_group in self.optimizer.param_groups:
float16_params_this_group = []
fp32_params_this_group = []
fp32_from_float16_params_this_group = []
# For all the parameters in this group:
for i, param in enumerate(param_group['params']):
if param.requires_grad:
# float16 params:
if param.type() in ['torch.cuda.HalfTensor',
'torch.cuda.BFloat16Tensor']:
float16_params_this_group.append(param)
# Create a copy
main_param = param.detach().clone().float()
# Copy tensor model parallel attributes.
mpu.copy_tensor_model_parallel_attributes(main_param,
param)
if hasattr(param, 'shared'):
main_param.shared = param.shared
# Replace the optimizer params with the new fp32 copy.
param_group['params'][i] = main_param
fp32_from_float16_params_this_group.append(main_param)
# Reset existing state dict key to the new main param.
if param in self.optimizer.state:
self.optimizer.state[main_param] \
= self.optimizer.state.pop(param)
# fp32 params.
elif param.type() == 'torch.cuda.FloatTensor':
fp32_params_this_group.append(param)
param_group['params'][i] = param
else:
raise TypeError('Wrapped parameters must be one of '
'torch.cuda.FloatTensor, '
'torch.cuda.HalfTensor, or '
'torch.cuda.BFloat16Tensor. '
'Received {}'.format(param.type()))
self.float16_groups.append(float16_params_this_group)
self.fp32_from_float16_groups.append(
fp32_from_float16_params_this_group)
self.fp32_from_fp32_groups.append(fp32_params_this_group)
def zero_grad(self, set_to_none=True):
"""We only need to zero the model related parameters, i.e.,
float16_groups & fp32_from_fp32_groups. We additionally zero
fp32_from_float16_groups as a memory optimization to reduce
fragmentation; in the case of set_to_none==True, the space
used by this field can be safely deallocated at this point."""
for group in self.float16_groups:
_zero_grad_group_helper(group, set_to_none)
for group in self.fp32_from_float16_groups:
_zero_grad_group_helper(group, set_to_none)
for group in self.fp32_from_fp32_groups:
_zero_grad_group_helper(group, set_to_none)
def _collect_main_grad_data_for_unscaling(self):
main_grads = []
# fp32 params from float16 ones.
for main_group in self.fp32_from_float16_groups:
for main_param in main_group:
if main_param.grad is not None:
main_grads.append(main_param.grad.data)
# Append fp32 parameters.
for main_group in self.fp32_from_fp32_groups:
for main_param in main_group:
if main_param.grad is not None:
main_grads.append(main_param.grad.data)
return main_grads
def _get_model_and_main_params_data_float16(self):
model_data = []
main_data = []
for model_group, main_group in zip(self.float16_groups,
self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
model_data.append(model_param.data)
main_data.append(main_param.data)
return model_data, main_data
def _copy_model_grads_to_main_grads(self):
# This only needs to be done for the float16 group.
for model_group, main_group in zip(self.float16_groups,
self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
main_param.grad = model_param.main_grad.float()
else:
if model_param.grad is not None:
main_param.grad = model_param.grad.float()
# Safe to deallocate model's grad/main_grad after copying.
# (If using contiguous buffers, main_grad's memory should
# persist and therefore should not be deallocated.)
model_param.grad = None
if self.params_have_main_grad and \
not self.use_contiguous_buffers_in_local_ddp:
model_param.main_grad = None
# For fp32 grads, we need to reset the grads to main grad.
if self.params_have_main_grad:
for model_group in self.fp32_from_fp32_groups:
for model_param in model_group:
model_param.grad = model_param.main_grad
# Safe to de-reference model's main_grad after copying.
# (If using contiguous buffers, main_grad's memory should
# persist and therefore should not be deallocated.)
if not self.use_contiguous_buffers_in_local_ddp:
model_param.main_grad = None
def _copy_main_params_to_model_params(self):
# Only needed for the float16 params.
model_data, main_data = self._get_model_and_main_params_data_float16()
_multi_tensor_copy_this_to_that(this=main_data, that=model_data,
overflow_buf=self._dummy_overflow_buf)
def _copy_model_params_to_main_params(self):
# Only needed for the float16 params.
model_data, main_data = self._get_model_and_main_params_data_float16()
_multi_tensor_copy_this_to_that(this=model_data, that=main_data,
overflow_buf=self._dummy_overflow_buf)
def state_dict(self):
state_dict = {}
state_dict['optimizer'] = self.optimizer.state_dict()
if self.grad_scaler:
state_dict['grad_scaler'] = self.grad_scaler.state_dict()
state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
return state_dict
def load_state_dict(self, state_dict):
# Optimizer.
optimizer_key = 'optimizer'
if optimizer_key not in state_dict:
optimizer_key = 'optimizer_state_dict'
print_rank_0('***WARNING*** loading optimizer from '
'an old checkpoint ...')
self.optimizer.load_state_dict(state_dict[optimizer_key])
# Grad scaler.
if 'grad_scaler' not in state_dict:
print_rank_0('***WARNING*** found an old checkpoint, will not '
'load grad scaler ...')
else:
if self.grad_scaler:
self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
else:
print_rank_0('***WARNING*** fould the grad scaler in the '
'checkpoint but it is None in the class. '
'Skipping loading grad scaler ...')
# Copy data for the main params.
fp32_from_float16_params_key = 'fp32_from_fp16_params'
if fp32_from_float16_params_key not in state_dict:
fp32_from_float16_params_key = 'fp32_from_fp16'
for current_group, saved_group in zip(
self.fp32_from_float16_groups,
state_dict[fp32_from_float16_params_key]):
for current_param, saved_param in zip(current_group, saved_group):
current_param.data.copy_(saved_param.data)
class FP32Optimizer(MegatronOptimizer):
def __init__(self, optimizer, clip_grad,
log_num_zeros_in_grad,
params_have_main_grad,
use_contiguous_buffers_in_local_ddp,
models):
super(FP32Optimizer, self).__init__(
optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
models)
self._scale = torch.cuda.FloatTensor([1.0])
def zero_grad(self, set_to_none=True):
"""Copied from torch.optim.optimizer"""
for group in self.optimizer.param_groups:
_zero_grad_group_helper(group['params'], set_to_none)
def get_loss_scale(self):
"""FP32 optimizer does not do any scaling."""
return self._scale
@torch.no_grad()
def step(self, args, timers):
"""Clip gradients (if needed) and step the base optimizer.
Always return successful since there is no overflow."""
# Copy main_grads to grads.
timers('optimizer-copy-to-main-grad').start()
if self.params_have_main_grad:
for param_group in self.optimizer.param_groups:
for param in param_group['params']:
param.grad = param.main_grad
# Safe to de-reference model's main_grad after copying.
# (If using contiguous buffers, main_grad's memory should
# persist and therefore should not be deallocated.)
if not self.use_contiguous_buffers_in_local_ddp:
param.main_grad = None
timers('optimizer-copy-to-main-grad').stop()
# Clip gradients.
timers('optimizer-clip-main-grad').start()
grad_norm = None
if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad)
timers('optimizer-clip-main-grad').stop()
# count the zeros in the grads
timers('optimizer-count-zeros').start()
num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None
timers('optimizer-count-zeros').stop()
# Update parameters.
timers('optimizer-inner-step').start()
self.optimizer.step()
timers('optimizer-inner-step').stop()
# No overflow for FP32 optimizer.
return True, grad_norm, num_zeros_in_grad
def reload_model_params(self):
pass
def state_dict(self):
return self.optimizer.state_dict()
def load_state_dict(self, state_dict):
self.optimizer.load_state_dict(state_dict)