|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
from functools import partial |
|
import itertools |
|
import json |
|
from lsh import cache, minhash |
|
import multiprocessing |
|
import numpy as np |
|
import time |
|
import pickle |
|
import sys |
|
import os |
|
|
|
|
|
|
|
def shingles(text, char_ngram=5): |
|
return set(text[head:head + char_ngram] |
|
for head in range(0, len(text) - char_ngram)) |
|
|
|
|
|
|
|
|
|
def jaccard(set_a, set_b, args): |
|
if len(set_a) < 1 or len(set_b) < 1: |
|
return 0.0 |
|
|
|
intersection = set_a & set_b |
|
union = set_a | set_b |
|
|
|
if args.jaccard == 'min': |
|
return len(intersection) / min(len(set_a), len(set_b)) |
|
elif args.jaccard == 'max': |
|
return len(intersection) / max(len(set_a), len(set_b)) |
|
else: |
|
return len(intersection) / len(union) |
|
|
|
def compute_fingerprint(line, key): |
|
try: |
|
myjson = json.loads(line) |
|
url = myjson[key] |
|
text = myjson['text'] |
|
fingerprint = hasher.fingerprint(text) |
|
except Exception as e: |
|
print('Error:', e) |
|
return None, None, None, False |
|
|
|
return url, text, fingerprint, True |
|
|
|
def url_pairs_to_remove(args, bucket_urls, url_doc): |
|
remove_urls_list = [] |
|
deduped_local, counter_local = 0, 0 |
|
iteration = 0 |
|
while len(bucket_urls) > 1: |
|
if args.heuristic_iter != -1 and \ |
|
iteration == args.heuristic_iter: |
|
break |
|
|
|
items = list(bucket_urls) |
|
remove_urls = [] |
|
main_url = items[np.random.randint(0, len(items))] |
|
main_dhingles = shingles(url_doc[main_url]) |
|
|
|
for i in range(0, len(items)): |
|
counter_local += 1 |
|
other_url = items[i] |
|
if other_url == main_url: |
|
continue |
|
other_shingles = shingles(url_doc[other_url]) |
|
try: |
|
jaccard_sim = jaccard(main_dhingles, other_shingles, args) |
|
except Exception as e: |
|
print('Error:', e) |
|
jaccard_sim = 0.0 |
|
if jaccard_sim > 0.5: |
|
remove_urls.append({other_url: jaccard_sim}) |
|
deduped_local += 1 |
|
bucket_urls.remove(other_url) |
|
|
|
bucket_urls.remove(main_url) |
|
if len(remove_urls) > 0: |
|
remove_urls_list.append({main_url: remove_urls}) |
|
iteration += 1 |
|
return remove_urls_list, deduped_local, counter_local |
|
|
|
def write_remove_urls_list(remove_urls_list, f_out): |
|
if len(remove_urls_list) > 0: |
|
for each_url_remove in remove_urls_list: |
|
myjson = json.dumps(each_url_remove, ensure_ascii=False) |
|
f_out.write(myjson.encode('utf-8')) |
|
f_out.write('\n'.encode('utf-8')) |
|
|
|
def compute_jaccard(each_bin, num_bins, start_time_local): |
|
|
|
remove_urls_list = [] |
|
deduped_local, counter_local, bucket_local = 0, 0, 0 |
|
|
|
for bucket_id in each_bin: |
|
bucket_local += 1 |
|
if os.getpid() % num_bins == 0 and bucket_local % 100000 == 0: |
|
print("Counter {}, progress {:.2f} time {:.2f}".\ |
|
format(bucket_local, float(bucket_local)/float(len(each_bin)),\ |
|
time.time() - start_time_local), flush=True) |
|
|
|
if len(each_bin[bucket_id]) <= 1: |
|
continue |
|
|
|
bucket_urls = each_bin[bucket_id].copy() |
|
remove_urls_list_sub, deduped_local_sub, counter_local_sub = \ |
|
url_pairs_to_remove(args, bucket_urls, url_doc) |
|
|
|
deduped_local += deduped_local_sub |
|
counter_local += counter_local_sub |
|
if len(remove_urls_list_sub) > 0: |
|
remove_urls_list.extend(remove_urls_list_sub) |
|
|
|
return remove_urls_list, deduped_local, counter_local |
|
|
|
def find_pair_urls_parallel(args, lshcache, url_doc): |
|
start_time = time.time() |
|
f_out = open(args.output, 'wb') |
|
deduped, counter = 0, 0 |
|
|
|
|
|
|
|
num_bins = len(lshcache.bins) |
|
pool = multiprocessing.Pool(num_bins) |
|
compute_jaccard_partial = partial(compute_jaccard, num_bins=num_bins, \ |
|
start_time_local=start_time) |
|
|
|
compute_jaccard_iter = pool.imap(compute_jaccard_partial, lshcache.bins) |
|
|
|
print("multiprocessing init took {:.2f}".format(time.time() - start_time),\ |
|
flush=True) |
|
for remove_urls_list, deduped_local, counter_local in compute_jaccard_iter: |
|
deduped += deduped_local |
|
counter += counter_local |
|
write_remove_urls_list(remove_urls_list, f_out) |
|
print(' [write]> processed {} documents in {:.2f} ' |
|
'seoncds and deduped {} documents ...'.format(counter, time.time()\ |
|
- start_time, deduped), flush=True) |
|
|
|
pool.close() |
|
pool.join() |
|
f_out.close() |
|
|
|
print(' Taken time for jaccard similariries {:.2f} seconds'.format(\ |
|
time.time() - start_time), flush=True) |
|
|
|
def find_pair_urls_sequential(args, lshcache, url_doc): |
|
start_time = time.time() |
|
f_out = open(args.output, 'wb') |
|
deduped, counter = 0, 0 |
|
for b in lshcache.bins: |
|
for bucket_id in b: |
|
if len(b[bucket_id]) <= 1: |
|
continue |
|
|
|
bucket_urls = b[bucket_id].copy() |
|
remove_urls_list_sub, deduped_local_sub, counter_local_sub = \ |
|
url_pairs_to_remove(args, bucket_urls, url_doc) |
|
|
|
deduped += deduped_local_sub |
|
counter += counter_local_sub |
|
write_remove_urls_list(remove_urls_list_sub, f_out) |
|
if counter % 10000 == 0: |
|
print(' [write]> processed {} documents in {:.2f} ' |
|
'seoncds and deduped {} documents ...'. |
|
format(counter, time.time() - start_time, |
|
deduped), flush=True) |
|
f_out.close() |
|
print(' [write]> processed {} documents in {:.2f} ' |
|
'seoncds and deduped {} documents ...'. |
|
format(counter, time.time() - start_time, |
|
deduped), flush=True) |
|
|
|
if __name__ == '__main__': |
|
|
|
print('parsing the arguments ...') |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--seed', type=int, default=1234, |
|
help='Random seed used for python, numpy') |
|
parser.add_argument('--inputs', nargs = '*', default=None, help = \ |
|
'Pairwise list of the input files and keys, ' |
|
'e.g. --inputs cc.json cc_id news.json news_id') |
|
parser.add_argument('--load-fingerprints', nargs = '*', default=None, |
|
help='Load fingerprints from a list of pickle files,' |
|
' e.g. cc.pkl news.pkl') |
|
parser.add_argument('--save-fingerprints', type=str, default=None, |
|
help='Save the fingerprints of the inputs.') |
|
parser.add_argument('--output', type=str, default=None, |
|
help='Output file name that consists of all ids' |
|
' with matching similarities') |
|
parser.add_argument('--jaccard', type=str, default='union', |
|
choices=['union', 'min', 'max'], help='Jaccard'\ |
|
' similarity computation') |
|
parser.add_argument('--heuristic-iter', type=int, default=1, |
|
help='Number of iterations to run the heuristics' |
|
': use -1 for exact') |
|
parser.add_argument('--num-bands', type=int, default=10, |
|
help='Number of bands to use in cache') |
|
parser.add_argument('--num-seeds', type=int, default=100, |
|
help='Number of seeds to use for minhash. Note that' |
|
' this value should be divisible by num-bands') |
|
parser.add_argument('--jaccard-parallel', action='store_true', |
|
help='Use this to process large number of documents.') |
|
args = parser.parse_args() |
|
|
|
print('finding possible duplicate content ...') |
|
|
|
|
|
np.random.seed(args.seed) |
|
seeds = np.random.randint(0, 1e6, size=args.num_seeds) |
|
|
|
|
|
hasher = minhash.MinHasher(seeds=seeds, char_ngram=5, hashbytes=4) |
|
lshcache = cache.Cache(num_bands=args.num_bands, hasher=hasher) |
|
|
|
url_doc = {} |
|
|
|
|
|
if args.load_fingerprints is not None: |
|
for count_fp, fp_file_name in enumerate(args.load_fingerprints): |
|
print("Loading fingerprints from pickle file {}".format( |
|
fp_file_name), flush=True) |
|
fp = open(fp_file_name, "rb") |
|
if count_fp == 0: |
|
|
|
lshcache = pickle.load(fp) |
|
url_doc = pickle.load(fp) |
|
else: |
|
|
|
local_lshcache = pickle.load(fp) |
|
local_url_doc = pickle.load(fp) |
|
for url in local_lshcache.fingerprints.keys(): |
|
url_doc[url] = local_url_doc[url] |
|
lshcache.add_fingerprint(local_lshcache.fingerprints[url], url) |
|
fp.close() |
|
|
|
counter = 0 |
|
start_time = time.time() |
|
|
|
|
|
|
|
if args.inputs is not None: |
|
print("Computing fingerprints", flush=True) |
|
assert len(args.inputs) % 2 == 0 |
|
for input_file, key in zip(args.inputs[::2], args.inputs[1::2]): |
|
print(' document processing {} with key {}'.format(input_file, key), |
|
flush=True) |
|
|
|
|
|
num_workers = 40 |
|
pool = multiprocessing.Pool(num_workers) |
|
fin = open(input_file, 'r', encoding='utf-8') |
|
compute_fingerprint_partial = partial(compute_fingerprint, key=key) |
|
compute_fingerprint_iter = pool.imap(compute_fingerprint_partial, |
|
fin, 512) |
|
|
|
for url, text, fingerprint, flag in compute_fingerprint_iter: |
|
counter += 1 |
|
if flag: |
|
url_doc[url] = text |
|
lshcache.add_fingerprint(fingerprint, url) |
|
if counter % 10000 == 0: |
|
print(' [read]> processed {} documents in {:.2f} ' |
|
'seconds ...'.format(counter, time.time() - \ |
|
start_time), flush=True) |
|
|
|
fin.close() |
|
pool.close() |
|
pool.join() |
|
|
|
|
|
if args.save_fingerprints is not None: |
|
print("Saving fingerprints to pickle file {}".format( |
|
args.save_fingerprints), flush=True) |
|
with open(args.save_fingerprints, 'wb') as f_save: |
|
pickle.dump(lshcache, f_save) |
|
pickle.dump(url_doc, f_save) |
|
|
|
|
|
if args.output is not None: |
|
print("Compute jaccard similarity", flush=True) |
|
if args.jaccard_parallel: |
|
find_pair_urls_parallel(args, lshcache, url_doc) |
|
else: |
|
find_pair_urls_sequential(args, lshcache, url_doc) |
|
|
|
print('done :-)') |
|
|
|
|