File size: 6,198 Bytes
f1e4729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
#!/usr/bin/env python3 -u
from collections import namedtuple
import math
import torch
from torch.nn.utils.rnn import pad_sequence
from fairseq import options, tasks, utils
from eet.fairseq.transformer import EETTransformerDecoder
Batch = namedtuple('Batch', 'ids src_tokens src_lengths')
def make_batches(lines, task, max_positions, encode_fn):
tokens = [task.source_dictionary.encode_line(encode_fn(line),
add_if_not_exist=False,
append_eos=False,
reverse_order=True).long()
for line in lines]
lengths = [t.numel() for t in tokens]
tokens = pad_sequence(tokens, batch_first=True,
padding_value=1).flip(dims=(1,))
return Batch(ids=torch.arange(len(tokens)),
src_tokens=tokens,
src_lengths=torch.tensor(lengths))
def encode_fn(x_str):
x_str = x_str.replace(" ", "")
x_str = x_str.split("</s>")
x_str = " </s> ".join([" ".join(list(x)) for x in x_str])
x_str = "</s> " + x_str
return x_str
def decode_fn(x):
x = x.replace(" ", "")
return x
def eos_token_filter(sent):
if "</s>" in sent:
return True
return False
def post_precess(line):
line = "</s>".join(line.split("</s>")[:-1])
return line
class Inference(object):
def __init__(self, model_path, data_path, eet_batch_size):
parser = options.get_generation_parser(
default_task="language_modeling")
args = options.parse_args_and_arch(parser)
args.data = data_path
args.path = model_path
self.args = args
# generate parameter
args.beam = 1 # don't change
args.min_len = 5
args.max_len_b = 200
args.lenpen = 1.0
args.sampling = True
args.sampling_topp = 0.8
# args.sampling_topk = 20
args.temperature = 0.8
args.no_repeat_ngram_size = 1
args.fp16 = True
# Setup task, e.g., translation
task = tasks.setup_task(args)
self.task = task
# Set dictionaries
self.src_dict = task.source_dictionary
self.tgt_dict = task.target_dictionary
use_cuda = torch.cuda.is_available() and not args.cpu
self.use_cuda = use_cuda
# Optimize ensemble for generation
state = torch.load(args.path, map_location=torch.device("cpu"))
cfg_args = eval(str(state["cfg"]))["model"]
del cfg_args["_name"]
keys_list = []
values_list = []
for key, value in cfg_args.items():
keys_list.append(key)
values_list.append(value)
Model_args = namedtuple("Model_args", keys_list)
model_args = Model_args._make(values_list)
del state
eet_seq_len = 1024 # max sequence length, (input length + generation length) shouldn't be larger than this
eet_batch_size = eet_batch_size
data_type = torch.float16
eet_config = {"data_type": data_type,
"max_batch": eet_batch_size,
"full_seq_len": eet_seq_len}
print(model_args)
eet_model = EETTransformerDecoder.from_fairseq_pretrained(model_id_or_path=args.path,
dictionary=self.src_dict, args=model_args,
config=eet_config,
no_encoder_attn=True)
self.models = [eet_model]
# Initialize generator
self.generator = task.build_generator(self.models, args)
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
self.align_dict = utils.load_align_dict(args.replace_unk)
self.max_positions = 1024 # the model config
self.eos_index = self.tgt_dict.eos()
self.pad_index = self.tgt_dict.pad()
def __call__(self, inputs, append_right_eos=True):
results = []
start_id = 0
batch = make_batches(inputs, self.task, self.max_positions, encode_fn)
inputs_str = inputs
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
# a new paragraph always
if src_tokens[0][-1].item() != self.eos_index and append_right_eos:
src_tokens = torch.cat([src_tokens, src_tokens.new_ones(
src_tokens.size(0), 1) * self.eos_index], dim=1)
src_lengths += 1
if self.use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
sample = {
'net_input': {
'src_tokens': src_tokens,
'src_lengths': src_lengths,
},
}
translations = self.task.inference_step(
self.generator, self.models, sample)
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
results.append((start_id + id, src_tokens[i], hypos))
# sort output to match input order
final_results = []
for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
# Process top predictions
tmp_res = []
for hypo in hypos[:min(len(hypos), self.args.nbest)]:
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo['tokens'].int().cpu()[
len(src_tokens) - 1:],
src_str=None,
alignment=hypo['alignment'],
align_dict=self.align_dict,
tgt_dict=self.tgt_dict)
detok_hypo_str = decode_fn(hypo_str)
if eos_token_filter(detok_hypo_str):
detok_hypo_str = post_precess(detok_hypo_str)
score = hypo['score'] / math.log(2) # convert to base 2
tmp_res.append([detok_hypo_str, score])
final_results.append(tmp_res)
return final_results
|