walid-iguider commited on
Commit
9bf0270
·
verified ·
1 Parent(s): ed5db7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md CHANGED
@@ -32,6 +32,49 @@ Here's a breakdown of the performance metrics:
32
  |:----------------------------|:----------------------|:----------------|:---------------------|:--------|
33
  | **Accuracy Normalized** | 0.5841 | 0.4414 | 0.5365 | 0.5250 |
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
36
 
37
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
32
  |:----------------------------|:----------------------|:----------------|:---------------------|:--------|
33
  | **Accuracy Normalized** | 0.5841 | 0.4414 | 0.5365 | 0.5250 |
34
 
35
+ ---
36
+
37
+ ## How to Use
38
+
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
41
+ import torch
42
+
43
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained("FairMind/Phi-3-mini-4k-instruct-bnb-4bit-Ita")
46
+ model = AutoModelForCausalLM.from_pretrained("FairMind/Phi-3-mini-4k-instruct-bnb-4bit-Ita")
47
+ model.to(device)
48
+
49
+
50
+ generation_config = GenerationConfig(
51
+ penalty_alpha=0.6, # The values balance the model confidence and the degeneration penalty in contrastive search decoding.
52
+ do_sample = True, # Whether or not to use sampling ; use greedy decoding otherwise.
53
+ top_k=5, # The number of highest probability vocabulary tokens to keep for top-k-filtering.
54
+ temperature=0.001, # The value used to modulate the next token probabilities.
55
+ repetition_penalty=1.7, # The parameter for repetition penalty. 1.0 means no penalty.
56
+ max_new_tokens = 64, # The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
57
+ eos_token_id=tokenizer.eos_token_id, # The id of the *end-of-sequence* token.
58
+ pad_token_id=tokenizer.eos_token_id, # The id of the *padding* token.
59
+ )
60
+
61
+
62
+ def generate_answer(question):
63
+ messages = [
64
+ {"role": "user", "content": question},
65
+ ]
66
+ model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
67
+ outputs = model.generate(model_inputs, generation_config=generation_config)
68
+ result = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
69
+ return result
70
+
71
+
72
+ question = """Quale è la torre più famosa di Parigi?"""
73
+ answer = generate_answer(question)
74
+ print(answer)
75
+ ```
76
+ ---
77
+
78
  This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
79
 
80
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)