File size: 15,585 Bytes
11cdf58
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbdd0c73be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbdd0c6eac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685425796057856875, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWJTZPlw1xrymlxU/WJTZPlw1xrymlxU/WJTZPlw1xrymlxU/WJTZPlw1xrymlxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo9/Av3HPsjwB2GI/NAiNv7iokz9E+5A/O27CvwvFuD9quJe/ZEvEv90GoL9GC5o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABYlNk+XDXGvKaXFT9Mvhw8tO2YuyCrqztYlNk+XDXGvKaXFT9Mvhw8tO2YuyCrqztYlNk+XDXGvKaXFT9Mvhw8tO2YuyCrqztYlNk+XDXGvKaXFT9Mvhw8tO2YuyCrqzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4249599  -0.02419537  0.5843452 ]\n [ 0.4249599  -0.02419537  0.5843452 ]\n [ 0.4249599  -0.02419537  0.5843452 ]\n [ 0.4249599  -0.02419537  0.5843452 ]]", "desired_goal": "[[-1.5068249   0.02182743  0.88610846]\n [-1.1018128   1.1535864   1.132668  ]\n [-1.518989    1.4435133  -1.1853154 ]\n [-1.5335507  -1.2502095   1.203469  ]]", "observation": "[[ 0.4249599  -0.02419537  0.5843452   0.00956685 -0.00466701  0.00523891]\n [ 0.4249599  -0.02419537  0.5843452   0.00956685 -0.00466701  0.00523891]\n [ 0.4249599  -0.02419537  0.5843452   0.00956685 -0.00466701  0.00523891]\n [ 0.4249599  -0.02419537  0.5843452   0.00956685 -0.00466701  0.00523891]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVRG7PXzOiz3tGIw9MXcMPU3JSLu9EWw+84rvPeae27ucQxY+9xoLvQdzKz2p5Wg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.09134165  0.06826493  0.06840692]\n [ 0.03429336 -0.00306376  0.23053642]\n [ 0.11696424 -0.00670229  0.14674228]\n [-0.03396126  0.04185775  0.05685965]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIflLt0/HY+b+UhpRSlIwBbJRLMowBdJRHQKX+zXbM5fd1fZQoaAZoCWgPQwhJoMGmzkMAwJSGlFKUaBVLMmgWR0Cl/o3wLE1mdX2UKGgGaAloD0MIG2g+525X87+UhpRSlGgVSzJoFkdApf5N0NjLCHV9lChoBmgJaA9DCHTQJRx6i+G/lIaUUpRoFUsyaBZHQKX+DkmQbMp1fZQoaAZoCWgPQwguU5PgDenzv5SGlFKUaBVLMmgWR0CmAKGplz2fdX2UKGgGaAloD0MIoUs49BbPCcCUhpRSlGgVSzJoFkdApgBiUcGTtHV9lChoBmgJaA9DCDWXGwx12OW/lIaUUpRoFUsyaBZHQKYAInpB5X51fZQoaAZoCWgPQwgCZr6Dn3jyv5SGlFKUaBVLMmgWR0Cl/+Lb5/LDdX2UKGgGaAloD0MIVmXfFcE/9b+UhpRSlGgVSzJoFkdApgJyiqQzUXV9lChoBmgJaA9DCFRzucFQBwvAlIaUUpRoFUsyaBZHQKYCM0P6KtR1fZQoaAZoCWgPQwgHmzqPit8MwJSGlFKUaBVLMmgWR0CmAfNorWiDdX2UKGgGaAloD0MIr0M1JVnnB8CUhpRSlGgVSzJoFkdApgG0lolD4XV9lChoBmgJaA9DCBeCHJQwE/S/lIaUUpRoFUsyaBZHQKYEP8eCCjF1fZQoaAZoCWgPQwgmcyzvqqcFwJSGlFKUaBVLMmgWR0CmBABMSK3vdX2UKGgGaAloD0MIQbYsX5ehBMCUhpRSlGgVSzJoFkdApgPAgcLjP3V9lChoBmgJaA9DCEcgXtcv+AbAlIaUUpRoFUsyaBZHQKYDgRxLkCF1fZQoaAZoCWgPQwjxg/OpYxXmv5SGlFKUaBVLMmgWR0CmBbXjuKGddX2UKGgGaAloD0MI3EduTbpt9L+UhpRSlGgVSzJoFkdApgV1nuiN83V9lChoBmgJaA9DCGK/J9apcvy/lIaUUpRoFUsyaBZHQKYFNKeTV2B1fZQoaAZoCWgPQwiKPbSPFfz7v5SGlFKUaBVLMmgWR0CmBPRmseXBdX2UKGgGaAloD0MIwFq1a0JaAMCUhpRSlGgVSzJoFkdApgbJ5cC5mXV9lChoBmgJaA9DCLwH6L6cGQHAlIaUUpRoFUsyaBZHQKYGiX40uUV1fZQoaAZoCWgPQwjFrBdDORH3v5SGlFKUaBVLMmgWR0CmBkjFqBVddX2UKGgGaAloD0MIdc3km23uAsCUhpRSlGgVSzJoFkdApgYIdXDFZXV9lChoBmgJaA9DCG9kHvmDwf2/lIaUUpRoFUsyaBZHQKYHz05lvqF1fZQoaAZoCWgPQwjMDYY6rDD5v5SGlFKUaBVLMmgWR0CmB48UVSGbdX2UKGgGaAloD0MIpkboZ+r1A8CUhpRSlGgVSzJoFkdApgdOXTmW+3V9lChoBmgJaA9DCNs2jILgcQDAlIaUUpRoFUsyaBZHQKYHDgbZOBV1fZQoaAZoCWgPQwgyy54ENmcRwJSGlFKUaBVLMmgWR0CmCNi5EtuldX2UKGgGaAloD0MI0/iFV5IcA8CUhpRSlGgVSzJoFkdApgiYWtU4rHV9lChoBmgJaA9DCClBf6FHTPe/lIaUUpRoFUsyaBZHQKYIV5s0pEx1fZQoaAZoCWgPQwgqcoi4OVXzv5SGlFKUaBVLMmgWR0CmCBcjqv/zdX2UKGgGaAloD0MIeM+B5QgZCMCUhpRSlGgVSzJoFkdApgntgrpaBHV9lChoBmgJaA9DCEq05PG0fPK/lIaUUpRoFUsyaBZHQKYJrfZVXFN1fZQoaAZoCWgPQwitE5fjFUj9v5SGlFKUaBVLMmgWR0CmCW0hV2iddX2UKGgGaAloD0MIyNCxg0pc/b+UhpRSlGgVSzJoFkdApgks3sHB13V9lChoBmgJaA9DCBE2PL1SlgfAlIaUUpRoFUsyaBZHQKYK+XC0ngJ1fZQoaAZoCWgPQwg5RrJHqNn5v5SGlFKUaBVLMmgWR0CmCrkaVD8cdX2UKGgGaAloD0MIOnR63o0lBcCUhpRSlGgVSzJoFkdApgp4WgvlEXV9lChoBmgJaA9DCIL917lp8/q/lIaUUpRoFUsyaBZHQKYKOBRQ7911fZQoaAZoCWgPQwiTGtoAbED4v5SGlFKUaBVLMmgWR0CmDAq5TZQIdX2UKGgGaAloD0MIT3l0Iyyq/r+UhpRSlGgVSzJoFkdApgvKZSeiBXV9lChoBmgJaA9DCLznwHKEjPm/lIaUUpRoFUsyaBZHQKYLiZWJaaF1fZQoaAZoCWgPQwiGOUGbHF4DwJSGlFKUaBVLMmgWR0CmC0k56t1ZdX2UKGgGaAloD0MInUmbqnvk+b+UhpRSlGgVSzJoFkdApg0XpQk5ZXV9lChoBmgJaA9DCCOimLwB5v+/lIaUUpRoFUsyaBZHQKYM10xM3611fZQoaAZoCWgPQwhkBFQ4glT3v5SGlFKUaBVLMmgWR0CmDJaBy0a7dX2UKGgGaAloD0MImiZsPxkjB8CUhpRSlGgVSzJoFkdApgxWOAAhjnV9lChoBmgJaA9DCEeNCTGXNA7AlIaUUpRoFUsyaBZHQKYOMQWepXJ1fZQoaAZoCWgPQwga+bziqQcCwJSGlFKUaBVLMmgWR0CmDfDV6NVBdX2UKGgGaAloD0MIxXb3AN1XAMCUhpRSlGgVSzJoFkdApg2wJ1JUYXV9lChoBmgJaA9DCBZsI57s5vC/lIaUUpRoFUsyaBZHQKYNb8xbjcV1fZQoaAZoCWgPQwgmAP+UKlEBwJSGlFKUaBVLMmgWR0CmD0DBVMmGdX2UKGgGaAloD0MIcsCuJk+5BMCUhpRSlGgVSzJoFkdApg8Aa5wwTXV9lChoBmgJaA9DCBGpaRfTDADAlIaUUpRoFUsyaBZHQKYOv5kbxVh1fZQoaAZoCWgPQwgGgZVDiyz+v5SGlFKUaBVLMmgWR0CmDn9ETg2qdX2UKGgGaAloD0MIUBcplIUv+r+UhpRSlGgVSzJoFkdAphBENKAavXV9lChoBmgJaA9DCNKrAUpDzfi/lIaUUpRoFUsyaBZHQKYQA+qR2bJ1fZQoaAZoCWgPQwi4PNaMDNILwJSGlFKUaBVLMmgWR0CmD8MQVbiZdX2UKGgGaAloD0MI3GW/7nRHDMCUhpRSlGgVSzJoFkdApg+CsdT5wnV9lChoBmgJaA9DCAjL2NDNngjAlIaUUpRoFUsyaBZHQKYRVXTVlPJ1fZQoaAZoCWgPQwj5+ITsvA33v5SGlFKUaBVLMmgWR0CmERU4JeE7dX2UKGgGaAloD0MIyVnY0w7fBsCUhpRSlGgVSzJoFkdAphDUgOjIrHV9lChoBmgJaA9DCPJBz2bVZ+a/lIaUUpRoFUsyaBZHQKYQlDHfdh11fZQoaAZoCWgPQwgUP8bctaQEwJSGlFKUaBVLMmgWR0CmElSprDZUdX2UKGgGaAloD0MIuDzWjAwSAcCUhpRSlGgVSzJoFkdAphIUbrC3w3V9lChoBmgJaA9DCLaGUnsRLQDAlIaUUpRoFUsyaBZHQKYR05lvqC91fZQoaAZoCWgPQwiCqzyBsBMIwJSGlFKUaBVLMmgWR0CmEZM495hSdX2UKGgGaAloD0MIB35Uw37vBcCUhpRSlGgVSzJoFkdAphNeX3QD3nV9lChoBmgJaA9DCGEW2jnNwvq/lIaUUpRoFUsyaBZHQKYTHhMJyAB1fZQoaAZoCWgPQwiA8KFES574v5SGlFKUaBVLMmgWR0CmEt1Gb1AadX2UKGgGaAloD0MIpd3oYz5gAcCUhpRSlGgVSzJoFkdAphKc/OdGzHV9lChoBmgJaA9DCLfu5qkOueq/lIaUUpRoFUsyaBZHQKYUX24/eLx1fZQoaAZoCWgPQwj191J40GwAwJSGlFKUaBVLMmgWR0CmFB8lgMMJdX2UKGgGaAloD0MIFva0w1+TAcCUhpRSlGgVSzJoFkdAphPeWhRIjHV9lChoBmgJaA9DCKvP1VbsTwDAlIaUUpRoFUsyaBZHQKYTnf642CN1fZQoaAZoCWgPQwhZ+Ppal7oPwJSGlFKUaBVLMmgWR0CmFWrlV94NdX2UKGgGaAloD0MIZB9kWTDRAsCUhpRSlGgVSzJoFkdAphUqk9ECvHV9lChoBmgJaA9DCEKY273c5/S/lIaUUpRoFUsyaBZHQKYU6ddVvMt1fZQoaAZoCWgPQwg9KChFK7f1v5SGlFKUaBVLMmgWR0CmFKmEPDpDdX2UKGgGaAloD0MI4xx1dFyN5b+UhpRSlGgVSzJoFkdAphZxRyfcvnV9lChoBmgJaA9DCGnHDb+brvy/lIaUUpRoFUsyaBZHQKYWMOAAhjh1fZQoaAZoCWgPQwh+jSRBuAL0v5SGlFKUaBVLMmgWR0CmFfArH2h7dX2UKGgGaAloD0MI5/up8dLN/b+UhpRSlGgVSzJoFkdAphWv29L6DXV9lChoBmgJaA9DCCHkvP+P0/a/lIaUUpRoFUsyaBZHQKYXd0mMOwx1fZQoaAZoCWgPQwjesG1RZkMBwJSGlFKUaBVLMmgWR0CmFzb0nPVvdX2UKGgGaAloD0MIXmiu00irAcCUhpRSlGgVSzJoFkdAphb2KEWZZ3V9lChoBmgJaA9DCMLB3sSQ3Pu/lIaUUpRoFUsyaBZHQKYWtfReC051fZQoaAZoCWgPQwjnxvSEJd7zv5SGlFKUaBVLMmgWR0CmGHRTS9dvdX2UKGgGaAloD0MIkh/xK9ZgEsCUhpRSlGgVSzJoFkdAphg0G7jDK3V9lChoBmgJaA9DCOza3m5J7gTAlIaUUpRoFUsyaBZHQKYX84ACGN91fZQoaAZoCWgPQwgyc4HLYy0FwJSGlFKUaBVLMmgWR0CmF7MqJ/G3dX2UKGgGaAloD0MIO22NCMYRFMCUhpRSlGgVSzJoFkdAphmeR5kbxXV9lChoBmgJaA9DCA0YJH1aBfK/lIaUUpRoFUsyaBZHQKYZXs5XEIh1fZQoaAZoCWgPQwh4fHvXoC8AwJSGlFKUaBVLMmgWR0CmGR62F36idX2UKGgGaAloD0MIQ46tZwhHBsCUhpRSlGgVSzJoFkdAphje/N7jUHV9lChoBmgJaA9DCJj75ChAVPO/lIaUUpRoFUsyaBZHQKYbYSDh99d1fZQoaAZoCWgPQwhvL2mM1lEDwJSGlFKUaBVLMmgWR0CmGyHE2pAEdX2UKGgGaAloD0MIE7pL4qwoDsCUhpRSlGgVSzJoFkdAphrhzo2XLXV9lChoBmgJaA9DCJ3X2CWqZxjAlIaUUpRoFUsyaBZHQKYaok43m3h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}