ppo-LunarLander-v2 / config.json
Faliu's picture
Upload PPO LunarLander-v2 trained agent
d0499a3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7809456d1630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7809456d16c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7809456d1750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7809456d17e0>", "_build": "<function ActorCriticPolicy._build at 0x7809456d1870>", "forward": "<function ActorCriticPolicy.forward at 0x7809456d1900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7809456d1990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7809456d1a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7809456d1ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7809456d1b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7809456d1bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7809456d1c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78094566da00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700676429091461292, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZNZ75l8b8+x6InPm+cjL4zK5O9f1I1vQAAAAAAAAAAZojEvW9sFj4EkyU+Vxxjvqf3Az6JUZy9AAAAAAAAAABmTqC9UyC+P2YUpb456Bi+L9ZMvjZ3Vb4AAAAAAAAAAJq10zvhTIC6YADvOCSG4zOrUdi6ypkLuAAAgD8AAIA/zQa9vEjzurq+6gK2vKvCsMc2BDrw7B01AACAPwAAgD+aRrO9FIiguub5gboyB0W3KZ+3uvE+jzkAAIA/AAAAAMBDjL3DjTi60Sk6tDVDHy+5CgK7RgOZMwAAgD8AAIA/mtl0vPZCCbwFNd29ZdIaPWFgcD2aOPy9AACAPwAAgD+mBYm9XPNjuvY557otiEO2+XKBumOxBjoAAIA/AACAP0Axs72uAYW6xQXkNzZlSzNqLDi6c2UPtwAAgD8AAAAApivTPVwzSLpQJ3u1b9GhrxQGvzqqbrs0AACAPwAAgD/ANRO+QNTYPmvWYD3GXYy+MmOZvcZTqTwAAAAAAAAAAAC32jzD1H09pYJFvjoYWL4IHK69jfXJvAAAAAAAAAAApsCyvfb8YLrVrH46fjthN24zKToGKJC5AACAPwAAAAAzE866aREsvH5L57p7RZC9QTmEvdmgub4AAIA/AACAP5qnWL02Xnq8GlssveHMqLz8It49rmNqPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFoGhh6SkmMAWyUTf0BjAF0lEdAmQVHyd4FA3V9lChoBkdAcOD9Zid8RmgHTToBaAhHQJkFiABkqc51fZQoaAZHQHF/P4mCyyFoB0v0aAhHQJkFx+gDifh1fZQoaAZHQGVSudoWYWtoB03oA2gIR0CZBo63AmAtdX2UKGgGR0BwusR8MNMHaAdNEwFoCEdAmQbxmK64D3V9lChoBkdAcJZZfUnXumgHS/doCEdAmQb6a1Cw8nV9lChoBkdAcgpaiKziTGgHTQ8BaAhHQJkID7iyY5V1fZQoaAZHQGaiM5fdAPdoB03oA2gIR0CZCBiQ1aW5dX2UKGgGR0BxAEMNMGoraAdNUgFoCEdAmQivzjFQ23V9lChoBkdAcVkiDujRD2gHTUgBaAhHQJkKDP0I1Lt1fZQoaAZHQHMepB9kSVZoB02VAWgIR0CZCirxRVIadX2UKGgGR0BzI8aMrEtNaAdNJgFoCEdAmQqXfMwDeXV9lChoBkdAcV/efZmI02gHTQcBaAhHQJkMA3WFvht1fZQoaAZHQHFYavmozepoB00CAWgIR0CZDDR1X/5tdX2UKGgGR0Bs5xB/qgRLaAdNFQFoCEdAmQyeMMqjJ3V9lChoBkdAcGc56t1ZDGgHTQABaAhHQJkNHv7WNFV1fZQoaAZHQHGN/GEPDpFoB0v4aAhHQJkNH8UEgW91fZQoaAZHQG+hgvL5h0BoB0v7aAhHQJkOTbUPQOZ1fZQoaAZHQHMNlg+hXbNoB00fAWgIR0CZDtEpRXOodX2UKGgGR0BueNYdQwbmaAdNAwFoCEdAmQ8BAfMfR3V9lChoBkdAcBd1NxlxwWgHTR4BaAhHQJkPvu1F6Rh1fZQoaAZHQFOoona37UJoB0utaAhHQJkP6WIGhVV1fZQoaAZHQHCaaraM72doB00gAWgIR0CZEP9Vmz0IdX2UKGgGR0Bwaxr/KhcraAdL3mgIR0CZEQ+UQkHEdX2UKGgGR0BxMJF1B+nZaAdNLwFoCEdAmRF1gc94eXV9lChoBkdAcdrRtxdY4mgHTTIBaAhHQJkSKbjLjgh1fZQoaAZHQHMBunyd4FBoB0v8aAhHQJkUIYfnwG51fZQoaAZHQHHRTJyQxN9oB01MAWgIR0CZFHfoicG1dX2UKGgGR0BwULpqynk1aAdNDwFoCEdAmRSe9nK4hHV9lChoBkdAcVazFuNxVGgHS/VoCEdAmRTqgIyCWnV9lChoBkdAchUsF+uvEGgHS/toCEdAmRUbJnxri3V9lChoBkdAcJQKb8WKuWgHS+toCEdAmRa23rleW3V9lChoBkdAcSQU3n6l+GgHTUYBaAhHQJkXZikO7QN1fZQoaAZHQHGuq0dBBzFoB00VAWgIR0CZGE5BC2MLdX2UKGgGR0BypyYD1XeWaAdNAwFoCEdAmRjs2BJ7LXV9lChoBkdAckhW8RL9M2gHTTMBaAhHQJkY+RdQfp51fZQoaAZHQHKqiGetjkNoB0vwaAhHQJkZw6mwaBJ1fZQoaAZHQG6aD59E1EVoB0voaAhHQJkaC8Zk0791fZQoaAZHQHMoGJ3xFy9oB00aAWgIR0CZGiphWo3rdX2UKGgGR0BwAZMvh60IaAdNEgFoCEdAmRtN/FzdUXV9lChoBkdAchgS2H+IdmgHS/VoCEdAmRubfpD/l3V9lChoBkdAccsdsSCe3GgHTRMBaAhHQJkfYrTYukF1fZQoaAZHQHBPec+aBqdoB00OAWgIR0CZIC/Q0GeMdX2UKGgGR0BxTPEcbR4RaAdNHQFoCEdAmSBI4MnZ03V9lChoBkdAcRtxp+MIeGgHTTYBaAhHQJkiXCbc45t1fZQoaAZHQHLkWIXTEzhoB00QAWgIR0CZIpkgwGnodX2UKGgGR0BvvrDCP6sRaAdL8mgIR0CZI5x0uDjBdX2UKGgGR0BxhCv+wTufaAdNPgFoCEdAmSXCJoCdSXV9lChoBkdAc1oUyHmA9WgHS/5oCEdAmSXGMsH0LHV9lChoBkdAbg8miQDFImgHTScBaAhHQJknlJf6XSl1fZQoaAZHQHFwsGxD9floB00fAWgIR0CZKS1MM7U5dX2UKGgGR0Bv1pZuAI6baAdNQwFoCEdAmSmEOmR/3HV9lChoBkdAcPyevZAY52gHTeIDaAhHQJk/RjZteld1fZQoaAZHQHFz/6GgzxhoB02cAWgIR0CZP2Xf642CdX2UKGgGR0By//NzKcNIaAdNYwFoCEdAmT+f6j323HV9lChoBkdAcesRl6JIlWgHTTsBaAhHQJlCMHoouwp1fZQoaAZHQHIapMlC1JFoB0v0aAhHQJlCO01IiC91fZQoaAZHQHCp5Ig/1QJoB00VAWgIR0CZQn68xsVMdX2UKGgGR0BxPpJ04iosaAdNFQFoCEdAmUKwLiMo+nV9lChoBkdAcVlrt3OfNGgHS9xoCEdAmULT1wo9cXV9lChoBkdAcR8LmZE2HmgHTWwBaAhHQJlDVT4tYjl1fZQoaAZHQHGZIFeOXE9oB0vwaAhHQJlDgYoAn2J1fZQoaAZHQHEUQHE/B31oB00FAWgIR0CZRU+ZgG8mdX2UKGgGR0Bw8KsxO+IuaAdL92gIR0CZRcjENvwWdX2UKGgGR0BswiElE7W/aAdL/2gIR0CZRjwiaAnVdX2UKGgGR0BvYWfChvitaAdNugFoCEdAmUaPDtPYWnV9lChoBkdAceCBeHBUJmgHS/BoCEdAmUeGRaHKwXV9lChoBkdATeWJzkp7TmgHS55oCEdAmUflzdUKiXV9lChoBkdAcialVcUuc2gHTQgBaAhHQJlIlYhdMTN1fZQoaAZHQHKmPpY9xIdoB00WAWgIR0CZSNLOiWVvdX2UKGgGR0BxSIsDnvDxaAdL0WgIR0CZSistkFwDdX2UKGgGR0BzKP2VVxS6aAdL8WgIR0CZSkHU+cH4dX2UKGgGR0BxGEnNPgvUaAdNBgFoCEdAmUqsLORkmXV9lChoBkdAcb91ZDArQWgHTRwBaAhHQJlLYrYoRZl1fZQoaAZHQHByAnpjc21oB0vyaAhHQJlNAx7AtWd1fZQoaAZHQHA8YV6/qPhoB01UAWgIR0CZTokhA4XGdX2UKGgGR0ByyOLEUCaJaAdNDAFoCEdAmU9L+1jRUnV9lChoBkdAcWkCAc1fmmgHTRoBaAhHQJlPT4wh4dJ1fZQoaAZHQHEmvczqKP5oB00NAWgIR0CZT+ndO6/ZdX2UKGgGR0Bk52ois4kvaAdN6ANoCEdAmVA/DYRNAXV9lChoBkdAc3ToHs1KoWgHS/xoCEdAmVHExubZvnV9lChoBkdAcU8jcEeQuGgHTScBaAhHQJlSjTOPeYV1fZQoaAZHQHKlGVmjCYVoB0vwaAhHQJlTPBtUGV11fZQoaAZHQGXubD2rXDpoB03oA2gIR0CZU53I+4b0dX2UKGgGR0BwMlhd+ocaaAdNAwFoCEdAmVPIKQaJh3V9lChoBkdAcmIEC/47BGgHS/RoCEdAmVPMxbjcVXV9lChoBkdAcR6VtGd7OWgHTSEBaAhHQJlXjmnwXqJ1fZQoaAZHQHLhe0gKWs1oB0v1aAhHQJlX5ZuAI6d1fZQoaAZHQHJ5ZtvXK8toB00YAWgIR0CZWS6hQFcIdX2UKGgGR0Bx6hIpYs/ZaAdNGAFoCEdAmVmguZkTYnV9lChoBkdAcwEa8Hv+fmgHTTEBaAhHQJlbB/SYw7F1fZQoaAZHQHKw3LV4HHFoB00HAWgIR0CZWwh37k4ndX2UKGgGR0Buysjmjj7zaAdNWwFoCEdAmVtv0Zm7KHV9lChoBkdAclRZ/kNnXmgHTQIBaAhHQJlb3HKfWc11fZQoaAZHQHHbJo4+8oRoB0vvaAhHQJlcWFEiMYN1fZQoaAZHQGp7GXgLqlhoB03kAmgIR0CZXQakyk9EdX2UKGgGR0BxWgs9SuQqaAdNHgFoCEdAmV4LPMSsbXV9lChoBkdAcRu0gr6LwWgHTRMBaAhHQJleRt4zJp51fZQoaAZHQHFBd5dGAkNoB00vAWgIR0CZX3faHsTndX2UKGgGR0BzUdBjWkJsaAdNFAFoCEdAmWPQX668QXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}