File size: 7,116 Bytes
092fe0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import torch
import torch.nn as nn
import torch.optim as optim
import time
import copy
import sys
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import roc_auc_score
from torch.autograd import Variable
from scripts.multiAUC import Metric
import numpy
from tqdm import tqdm
from random import sample
from scripts.plot import bootstrap_auc,result_csv,plotimage
import pynvml
pynvml.nvmlInit()
from prettytable import PrettyTable
def train_model(model, dataloaders, criterion, optimizer,num_epochs, modelname, device):
global VAL_auc,TEST_auc
since = time.time()
train_loss_history, valid_loss_history, test_loss_history= [], [], []
test_maj_history, test_min_history = [], []
train_auc_history, val_auc_history, test_auc_history = [], [], []
best_model_wts = copy.deepcopy(model.state_dict())
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
for epoch in range(num_epochs):
start = time.time()
print('{} Epoch {}/{} {}'.format('-' * 30, epoch, num_epochs - 1, '-' * 30))
for phase in ['train','valid', 'test']:
if phase == 'train' and epoch != 0:
model.train()
else:
model.eval()
running_loss,running_corrects,prob_all, label_all = [], [], [], []
with tqdm(range(len(dataloaders[phase])),desc='%s' % phase, ncols=100) as t:
if epoch == 0 :
t.set_postfix(L = 0.000, usedMemory = 0)
for data in dataloaders[phase]:
inputs, labels, sub = data
print(labels)
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad(set_to_none=True)
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
if phase == 'train' and epoch != 0:
loss.backward()
optimizer.step()
running_loss.append(loss.item())
running_corrects.append((preds.cpu().detach() == labels.cpu().detach()).numpy())
prob_all.extend(outputs[:, 1].cpu().detach().numpy())
label_all.extend(labels.cpu().detach().numpy())
"""
B:batch
L:Loss
maj: Maj group AUC
min: Min group AUC
n: NVIDIA Memory used
"""
gpu_device = pynvml.nvmlDeviceGetHandleByIndex(0)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(gpu_device).total
usedMemory = pynvml.nvmlDeviceGetMemoryInfo(gpu_device).used
usedMemory = usedMemory/meminfo
t.set_postfix(loss = loss.data.item(), usedMemory = usedMemory) #
t.update()
# num = len(label_all)
# auc = roc_auc_score(label_all, prob_all)
# epoch_loss = np.mean(running_loss)
# label_all = np.array(label_all)
# prob_all = np.array(prob_all)
# statistics = bootstrap_auc(label_all, prob_all, [0,1,3,4,5])
# max_auc = np.max(statistics, axis=1).max()
# min_auc = np.min(statistics, axis=1).max()
# print('{} --> Num: {} Loss: {:.4f} AUROC: {:.4f} ({:.2f} ~ {:.2f})'.format(
# phase, num, epoch_loss, auc, min_auc, max_auc ))
if modelname =="Thyroid_PF":
try:
data_auc = roc_auc_score(Label,Output)
Data_auc_maj = roc_auc_score(Label_maj, Output_maj)
Data_auc_min = roc_auc_score(Label_min, Output_min)
except:
data_auc = roc_auc_score(Label,Output)
Data_auc_maj = 0
Data_auc_min = 0
epoch_loss = running_loss / Batch
statistics = bootstrap_auc(Label, Output, [0,1,2,3,4])
max_auc = np.max(statistics, axis=1).max()
min_auc = np.min(statistics, axis=1).max()
if G == [] and phase == "train":
G1.append(0)
elif phase == "train":
G1.append(sum(G)/len(G))
print('{} --> Num: {} Loss: {:.4f} Gamma: {:.4f} AUROC: {:.4f} ({:.2f} ~ {:.2f}) (Maj {:.4f}, Min {:.4f})'.format(
phase, len(outputs_out), epoch_loss, G1[-1], data_auc, min_auc, max_auc, Data_auc_maj, Data_auc_min))
else:
myMetic = Metric(Output,Label)
data_auc,auc = myMetic.auROC()
epoch_loss = running_loss / Batch
statistics = bootstrap_auc(Label, Output, [0,1,2,3,4])
max_auc = np.max(statistics, axis=1).max()
min_auc = np.min(statistics, axis=1).max()
if G == [] and phase == "train":
G1.append(0)
elif phase == "train":
G1.append(sum(G)/len(G))
print('{} --> Num: {} Loss: {:.4f} AUROC: {:.4f} ({:.2f} ~ {:.2f}) (Maj {:.4f}, Min {:.4f})'.format(
phase, len(outputs_out), epoch_loss, data_auc, min_auc, max_auc, data_auc_maj,data_auc_min))
if phase == 'train':
train_loss_history.append(epoch_loss)
train_auc_history.append(auc)
if phase == 'valid':
valid_loss_history.append(epoch_loss)
val_auc_history.append(auc)
if phase == 'test':
test_loss_history.append(epoch_loss)
test_auc_history.append(auc)
if phase == 'valid' and train_auc_history[-1] >= 0.9:
if val_auc_history[-1] >= max(val_auc_history) or test_auc_history[-1] >= max(test_auc_history):
print("In epoch %d, better AUC(%.3f) and save model. " % (epoch, float(val_auc_history[-1])))
PATH = '/export/home/daifang/Diffusion/Resnet/modelsaved/%s/e%d_%s_V%.3fT%.3f.pth' % (modelname,epoch,modelname,val_auc_history[-1],test_auc_history[-1])
torch.save(model.state_dict(),PATH)
print("learning rate = %.6f time: %.1f sec" % (optimizer.param_groups[-1]['lr'], time.time() - start))
if epoch != 0:
scheduler.step()
print()
plotimage(train_auc_history, val_auc_history, test_auc_history,"AUC", modelname)
plotimage(train_loss_history, valid_loss_history, test_loss_history,"Loss", modelname)
result_csv( train_auc_history, val_auc_history, test_auc_history, modelname)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
model.load_state_dict(best_model_wts) |