File size: 9,046 Bytes
2ad255e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright 2024 Hui Lu, Fang Dai, Siqiong Yao.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# import os
# import torch
# import numpy as np
# import torchvision.transforms as transforms
# from torch.utils.data import DataLoader, Dataset
# from PIL import Image
# from gtda.images import Binarizer, HeightFiltration
# from gtda.homology import CubicalPersistence
# from gtda.diagrams import Amplitude
# from sklearn.metrics import pairwise_distances


# transform = transforms.Compose([
#     transforms.Resize((256, 256)),
#     transforms.ToTensor(),
#     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# ])


# class ImageFolderDataset(Dataset):
#     def __init__(self, folder_path, transform=None):
#         self.file_paths = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.png')]
#         self.transform = transform
    
#     def __len__(self):
#         return len(self.file_paths)
    
#     def __getitem__(self, idx):
#         img_path = self.file_paths[idx]
#         image = Image.open(img_path).convert('RGB')
#         if self.transform:
#             image = self.transform(image)
#         return image

# def load_data(folder_path):
#     dataset = ImageFolderDataset(folder_path, transform=transform)
#     loader = DataLoader(dataset, batch_size=10, shuffle=False)
#     return loader

# # 计算Diversity Score
# def calculate_diversity_score(features):
#     distances = pairwise_distances(features, metric='euclidean')
#     diversity_score = np.mean(distances)
#     return diversity_score

# # 计算Geometry Score
# def calculate_geometry_score(images):
#     binarizer = Binarizer(threshold=0.5)
#     height_filtration = HeightFiltration(direction=np.array([1, 1, 1]))
#     cubical_persistence = CubicalPersistence(homology_dimensions=[0, 1], coeff=2)
#     amplitude = Amplitude(metric='wasserstein', metric_params={'p': 2})
    
#     # Preprocess images
#     images = np.array([img.numpy() if isinstance(img, torch.Tensor) else img for img in images])
#     images_binarized = binarizer.fit_transform(images)
#     images_filtered = height_filtration.fit_transform(images_binarized)
#     diagrams = cubical_persistence.fit_transform(images_filtered)
#     gs_score = amplitude.fit_transform(diagrams)
#     return gs_score.mean()


# generated_images_loader = load_data('../figure/1')
# real_images_loader = load_data('../figure/2')


# generated_features = []
# real_features = []

# for img_batch in generated_images_loader:
#     generated_features.extend(img_batch.numpy())

# for img_batch in real_images_loader:
#     real_features.extend(img_batch.numpy())

# generated_features = np.array(generated_features)
# real_features = np.array(real_features)

# # 计算Diversity Score
# generated_div_score = calculate_diversity_score(generated_features.reshape(len(generated_features), -1))
# real_div_score = calculate_diversity_score(real_features.reshape(len(real_features), -1))

# # 计算Geometry Score
# generated_gs_score = calculate_geometry_score(generated_features)
# real_gs_score = calculate_geometry_score(real_features)

# print(f"Generated Images Diversity Score: {generated_div_score}")
# print(f"Real Images Diversity Score: {real_div_score}")
# print(f"Generated Images Geometry Score: {generated_gs_score}")
# print(f"Real Images Geometry Score: {real_gs_score}")


# import torch
# import torch.nn.functional as F
# from torchvision import transforms
# from PIL import Image
# import numpy as np
# import os

# # Function to load and preprocess images
# def load_and_preprocess_image(img_path):
#     img = Image.open(img_path).convert('RGB')
#     preprocess = transforms.Compose([
#         transforms.ToTensor(),
#     ])
#     img = preprocess(img).unsqueeze(0)  # Add batch dimension
#     return img

# # Function to compute image gradients
# def compute_gradients(img):
#     grad_x = img[:, :, 1:, :] - img[:, :, :-1, :]
#     grad_y = img[:, :, :, 1:] - img[:, :, :, :-1]
#     return grad_x, grad_y

# # Function to calculate Gradient Similarity (GS)
# def gradient_similarity(real_img, gen_img):
#     real_grad_x, real_grad_y = compute_gradients(real_img)
#     gen_grad_x, gen_grad_y = compute_gradients(gen_img)

#     grad_sim_x = F.cosine_similarity(real_grad_x, gen_grad_x, dim=1).mean()
#     grad_sim_y = F.cosine_similarity(real_grad_y, gen_grad_y, dim=1).mean()

#     gs = (grad_sim_x + grad_sim_y) / 2.0
#     return gs.item()

# # Example usage
# real_img_dir = '../GS/real'  # Replace with your real image directory
# gen_img_dir = '../GS/fake'  # Replace with your generated image directory

# real_img_paths = [os.path.join(real_img_dir, fname) for fname in os.listdir(real_img_dir) if fname.endswith(('jpg', 'jpeg', 'png'))]
# gen_img_paths = [os.path.join(gen_img_dir, fname) for fname in os.listdir(gen_img_dir) if fname.endswith(('jpg', 'jpeg', 'png'))]

# # Ensure both directories have the same number of images
# assert len(real_img_paths) == len(gen_img_paths), "The number of images in both directories must be the same"

# gs_scores = []

# for real_img_path, gen_img_path in zip(real_img_paths, gen_img_paths):
#     real_img = load_and_preprocess_image(real_img_path)
#     gen_img = load_and_preprocess_image(gen_img_path)

#     gs = gradient_similarity(real_img, gen_img)
#     gs_scores.append(gs)

#     print(f'Processed {real_img_path} and {gen_img_path}: GS = {gs:.3e}')

# mean_gs = np.mean(gs_scores)
# print(f'Mean Gradient Similarity (GS) score: {mean_gs:.3e}')



import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import numpy as np
import os
from prdc import compute_prdc

# Function to load and preprocess images
def load_and_preprocess_image(img_path):
    img = Image.open(img_path).convert('RGB')
    preprocess = transforms.Compose([
        transforms.Resize((299, 299)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
    ])
    img = preprocess(img).unsqueeze(0)  # Add batch dimension
    return img

# Function to extract features using InceptionV3
def extract_features(img_paths, model):
    features = []
    with torch.no_grad():
        for img_path in img_paths:
            img = load_and_preprocess_image(img_path)
            feature = model(img).numpy().squeeze()
            features.append(feature)
    features = np.array(features)
    return features

# Load the InceptionV3 model
model = models.resnet18(pretrained=False)
model.load_state_dict(torch.load('../modelsaved/Pretrained_InceptionV3.pth', map_location=lambda storage, loc: storage),strict=False)
model.fc = nn.Identity()  # Remove the final classification layer
model.eval()

# Example usage
real_img_dir = '../dataset/1'  # Replace with your real image directory
gen_img_dir = '../dataset/2'  # Replace with your generated image directory

real_img_paths = [os.path.join(real_img_dir, fname) for fname in os.listdir(real_img_dir) if fname.endswith(('jpg', 'jpeg', 'png'))]
gen_img_paths = [os.path.join(gen_img_dir, fname) for fname in os.listdir(gen_img_dir) if fname.endswith(('jpg', 'jpeg', 'png'))]

# Extract features for real and generated images
real_features = extract_features(real_img_paths, model)
gen_features = extract_features(gen_img_paths, model)

# Calculate PRDC metrics
metrics = compute_prdc(real_features=real_features,
                       fake_features=gen_features,
                       nearest_k=2)

print(metrics)



# import torch
# from torch import nn
# from clip import clip
# import numpy as np


# clip_model, preprocess = clip.load("ViT-L/14@336px", device="cuda")


# def get_clip_embedding(images):
#     with torch.no_grad():
#         images = preprocess(images).unsqueeze(0).to("cuda")
#         image_features = clip_model.encode_image(images)
#     return image_features


# def compute_mmd(x, y, kernel):

#     xx = kernel(x, x)
#     yy = kernel(y, y)
#     xy = kernel(x, y)

#     mmd = torch.mean(xx) + torch.mean(yy) - 2 * torch.mean(xy)
#     return mmd

# def gaussian_rbf_kernel(x, y, sigma=1.0):

#     dist = torch.cdist(x, y, p=2.0)

#     return torch.exp(-dist**2 / (2 * sigma**2))


# real_images = ... 
# generated_images = ... 


# real_features = get_clip_embedding(real_images)
# generated_features = get_clip_embedding(generated_images)


# sigma = 1.0  
# mmd = compute_mmd(real_features, generated_features, lambda x, y: gaussian_rbf_kernel(x, y, sigma))
# cmmd = mmd * 1000  

# print(f"CMMD: {cmmd.item()}")