|
import pandas as pd |
|
import numpy as np |
|
from torch.utils.data import Dataset |
|
import os |
|
from PIL import Image |
|
|
|
class Thyroid_Datasets(Dataset): |
|
def __init__( |
|
self, |
|
path_to_images, |
|
fold, |
|
PRED_LABEL, |
|
transform=None, |
|
sample=0, |
|
finding="any"): |
|
self.transform = transform |
|
self.path_to_images = path_to_images |
|
self.PRED_LABEL = PRED_LABEL |
|
self.df = pd.read_csv("%s/CSV/%s.csv" % (path_to_images,fold)) |
|
print("%s/CSV/%s.csv " % (path_to_images,fold), "num of images: %s" % len(self.df)) |
|
|
|
if(sample > 0 and sample < len(self.df)): |
|
self.df = self.df.sample(sample) |
|
self.df = self.df.dropna(subset = ['Path']) |
|
self.df = self.df.set_index("Path") |
|
|
|
|
|
def __len__(self): |
|
return len(self.df) |
|
|
|
|
|
def __getitem__(self, idx): |
|
X = self.df.index[idx] |
|
if str(X) is not None: |
|
image = Image.open(os.path.join(self.path_to_images,str(X))) |
|
image = image.convert('RGB') |
|
label = self.df["label".strip()].iloc[idx].astype('int') |
|
subg = self.df["subtype".strip()].iloc[idx] |
|
if self.transform: |
|
image = self.transform(image) |
|
|
|
return (image, label, subg) |
|
|
|
class Multi_Thyroid_Datasets(Dataset): |
|
def __init__( |
|
self, |
|
path_to_images, |
|
fold, |
|
PRED_LABEL, |
|
transform=None, |
|
sample=0, |
|
finding="any"): |
|
self.transform = transform |
|
self.path_to_images = path_to_images |
|
self.PRED_LABEL = PRED_LABEL |
|
self.df = pd.read_csv("%s/CSV/%s.csv" % (path_to_images,fold)) |
|
print("%s/CSV/%s.csv " % (path_to_images,fold), "num of images: %s" % len(self.df)) |
|
|
|
if(sample > 0 and sample < len(self.df)): |
|
self.df = self.df.sample(sample) |
|
self.df = self.df.dropna(subset = ['Path']) |
|
self.df = self.df.set_index("Path") |
|
|
|
|
|
def __len__(self): |
|
return len(self.df) |
|
|
|
|
|
def __getitem__(self, idx): |
|
X = self.df.index[idx] |
|
if str(X) is not None: |
|
image = Image.open(os.path.join(self.path_to_images,str(X))) |
|
image = image.convert('RGB') |
|
label = self.df["label".strip()].iloc[idx].astype('int') |
|
subg = self.df["subtype".strip()].iloc[idx] |
|
if self.transform: |
|
image = self.transform(image) |
|
|
|
return (image, label, subg) |
|
return (image, label, subg) |