|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import os |
|
import re |
|
import warnings |
|
from collections import defaultdict |
|
from contextlib import nullcontext |
|
from io import BytesIO |
|
from pathlib import Path |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import requests |
|
import safetensors |
|
import torch |
|
import torch.nn.functional as F |
|
from huggingface_hub import hf_hub_download |
|
from torch import nn |
|
|
|
from .utils import ( |
|
DIFFUSERS_CACHE, |
|
HF_HUB_OFFLINE, |
|
_get_model_file, |
|
deprecate, |
|
is_accelerate_available, |
|
is_omegaconf_available, |
|
is_transformers_available, |
|
logging, |
|
) |
|
from .utils.import_utils import BACKENDS_MAPPING |
|
|
|
|
|
if is_transformers_available(): |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel, PreTrainedTokenizer |
|
|
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
from accelerate.utils import set_module_tensor_to_device |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
TEXT_ENCODER_NAME = "text_encoder" |
|
UNET_NAME = "unet" |
|
|
|
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin" |
|
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors" |
|
|
|
TEXT_INVERSION_NAME = "learned_embeds.bin" |
|
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors" |
|
|
|
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin" |
|
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors" |
|
|
|
|
|
class PatchedLoraProjection(nn.Module): |
|
def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None): |
|
super().__init__() |
|
from .models.lora import LoRALinearLayer |
|
|
|
self.regular_linear_layer = regular_linear_layer |
|
|
|
device = self.regular_linear_layer.weight.device |
|
|
|
if dtype is None: |
|
dtype = self.regular_linear_layer.weight.dtype |
|
|
|
self.lora_linear_layer = LoRALinearLayer( |
|
self.regular_linear_layer.in_features, |
|
self.regular_linear_layer.out_features, |
|
network_alpha=network_alpha, |
|
device=device, |
|
dtype=dtype, |
|
rank=rank, |
|
) |
|
|
|
self.lora_scale = lora_scale |
|
|
|
def forward(self, input): |
|
return self.regular_linear_layer(input) + self.lora_scale * self.lora_linear_layer(input) |
|
|
|
|
|
def text_encoder_attn_modules(text_encoder): |
|
attn_modules = [] |
|
|
|
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): |
|
for i, layer in enumerate(text_encoder.text_model.encoder.layers): |
|
name = f"text_model.encoder.layers.{i}.self_attn" |
|
mod = layer.self_attn |
|
attn_modules.append((name, mod)) |
|
else: |
|
raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") |
|
|
|
return attn_modules |
|
|
|
|
|
def text_encoder_mlp_modules(text_encoder): |
|
mlp_modules = [] |
|
|
|
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): |
|
for i, layer in enumerate(text_encoder.text_model.encoder.layers): |
|
mlp_mod = layer.mlp |
|
name = f"text_model.encoder.layers.{i}.mlp" |
|
mlp_modules.append((name, mlp_mod)) |
|
else: |
|
raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}") |
|
|
|
return mlp_modules |
|
|
|
|
|
def text_encoder_lora_state_dict(text_encoder): |
|
state_dict = {} |
|
|
|
for name, module in text_encoder_attn_modules(text_encoder): |
|
for k, v in module.q_proj.lora_linear_layer.state_dict().items(): |
|
state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v |
|
|
|
for k, v in module.k_proj.lora_linear_layer.state_dict().items(): |
|
state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v |
|
|
|
for k, v in module.v_proj.lora_linear_layer.state_dict().items(): |
|
state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v |
|
|
|
for k, v in module.out_proj.lora_linear_layer.state_dict().items(): |
|
state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v |
|
|
|
return state_dict |
|
|
|
|
|
class AttnProcsLayers(torch.nn.Module): |
|
def __init__(self, state_dict: Dict[str, torch.Tensor]): |
|
super().__init__() |
|
self.layers = torch.nn.ModuleList(state_dict.values()) |
|
self.mapping = dict(enumerate(state_dict.keys())) |
|
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} |
|
|
|
|
|
self.split_keys = [".processor", ".self_attn"] |
|
|
|
|
|
|
|
def map_to(module, state_dict, *args, **kwargs): |
|
new_state_dict = {} |
|
for key, value in state_dict.items(): |
|
num = int(key.split(".")[1]) |
|
new_key = key.replace(f"layers.{num}", module.mapping[num]) |
|
new_state_dict[new_key] = value |
|
|
|
return new_state_dict |
|
|
|
def remap_key(key, state_dict): |
|
for k in self.split_keys: |
|
if k in key: |
|
return key.split(k)[0] + k |
|
|
|
raise ValueError( |
|
f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}." |
|
) |
|
|
|
def map_from(module, state_dict, *args, **kwargs): |
|
all_keys = list(state_dict.keys()) |
|
for key in all_keys: |
|
replace_key = remap_key(key, state_dict) |
|
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") |
|
state_dict[new_key] = state_dict[key] |
|
del state_dict[key] |
|
|
|
self._register_state_dict_hook(map_to) |
|
self._register_load_state_dict_pre_hook(map_from, with_module=True) |
|
|
|
|
|
class UNet2DConditionLoadersMixin: |
|
text_encoder_name = TEXT_ENCODER_NAME |
|
unet_name = UNET_NAME |
|
|
|
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): |
|
r""" |
|
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be |
|
defined in |
|
[`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py) |
|
and be a `torch.nn.Module` class. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
Can be either: |
|
|
|
- A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a directory (for example `./my_model_directory`) containing the model weights saved |
|
with [`ModelMixin.save_pretrained`]. |
|
- A [torch state |
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
mirror (`str`, *optional*): |
|
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not |
|
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more |
|
information. |
|
|
|
""" |
|
from .models.attention_processor import ( |
|
AttnAddedKVProcessor, |
|
AttnAddedKVProcessor2_0, |
|
CustomDiffusionAttnProcessor, |
|
LoRAAttnAddedKVProcessor, |
|
LoRAAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
SlicedAttnAddedKVProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer |
|
|
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
weight_name = kwargs.pop("weight_name", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
|
|
network_alphas = kwargs.pop("network_alphas", None) |
|
is_network_alphas_none = network_alphas is None |
|
|
|
allow_pickle = False |
|
|
|
if use_safetensors is None: |
|
use_safetensors = True |
|
allow_pickle = True |
|
|
|
user_agent = { |
|
"file_type": "attn_procs_weights", |
|
"framework": "pytorch", |
|
} |
|
|
|
model_file = None |
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
|
|
if (use_safetensors and weight_name is None) or ( |
|
weight_name is not None and weight_name.endswith(".safetensors") |
|
): |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = safetensors.torch.load_file(model_file, device="cpu") |
|
except IOError as e: |
|
if not allow_pickle: |
|
raise e |
|
|
|
pass |
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
|
|
attn_processors = {} |
|
non_attn_lora_layers = [] |
|
|
|
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) |
|
is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys()) |
|
|
|
if is_lora: |
|
is_new_lora_format = all( |
|
key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys() |
|
) |
|
if is_new_lora_format: |
|
|
|
is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys()) |
|
if is_text_encoder_present: |
|
warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)." |
|
warnings.warn(warn_message) |
|
unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)] |
|
state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys} |
|
|
|
lora_grouped_dict = defaultdict(dict) |
|
mapped_network_alphas = {} |
|
|
|
all_keys = list(state_dict.keys()) |
|
for key in all_keys: |
|
value = state_dict.pop(key) |
|
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) |
|
lora_grouped_dict[attn_processor_key][sub_key] = value |
|
|
|
|
|
if network_alphas is not None: |
|
network_alphas_ = copy.deepcopy(network_alphas) |
|
for k in network_alphas_: |
|
if k.replace(".alpha", "") in key: |
|
mapped_network_alphas.update({attn_processor_key: network_alphas.pop(k)}) |
|
|
|
if not is_network_alphas_none: |
|
if len(network_alphas) > 0: |
|
raise ValueError( |
|
f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}" |
|
) |
|
|
|
if len(state_dict) > 0: |
|
raise ValueError( |
|
f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}" |
|
) |
|
|
|
for key, value_dict in lora_grouped_dict.items(): |
|
attn_processor = self |
|
for sub_key in key.split("."): |
|
attn_processor = getattr(attn_processor, sub_key) |
|
|
|
|
|
|
|
if "lora.down.weight" in value_dict: |
|
rank = value_dict["lora.down.weight"].shape[0] |
|
|
|
if isinstance(attn_processor, LoRACompatibleConv): |
|
in_features = attn_processor.in_channels |
|
out_features = attn_processor.out_channels |
|
kernel_size = attn_processor.kernel_size |
|
|
|
lora = LoRAConv2dLayer( |
|
in_features=in_features, |
|
out_features=out_features, |
|
rank=rank, |
|
kernel_size=kernel_size, |
|
stride=attn_processor.stride, |
|
padding=attn_processor.padding, |
|
network_alpha=mapped_network_alphas.get(key), |
|
) |
|
elif isinstance(attn_processor, LoRACompatibleLinear): |
|
lora = LoRALinearLayer( |
|
attn_processor.in_features, |
|
attn_processor.out_features, |
|
rank, |
|
mapped_network_alphas.get(key), |
|
) |
|
else: |
|
raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.") |
|
|
|
value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()} |
|
lora.load_state_dict(value_dict) |
|
non_attn_lora_layers.append((attn_processor, lora)) |
|
else: |
|
|
|
rank_mapping = {} |
|
hidden_size_mapping = {} |
|
for projection_id in ["to_k", "to_q", "to_v", "to_out"]: |
|
rank = value_dict[f"{projection_id}_lora.down.weight"].shape[0] |
|
hidden_size = value_dict[f"{projection_id}_lora.up.weight"].shape[0] |
|
|
|
rank_mapping.update({f"{projection_id}_lora.down.weight": rank}) |
|
hidden_size_mapping.update({f"{projection_id}_lora.up.weight": hidden_size}) |
|
|
|
if isinstance( |
|
attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0) |
|
): |
|
cross_attention_dim = value_dict["add_k_proj_lora.down.weight"].shape[1] |
|
attn_processor_class = LoRAAttnAddedKVProcessor |
|
else: |
|
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1] |
|
if isinstance(attn_processor, (XFormersAttnProcessor, LoRAXFormersAttnProcessor)): |
|
attn_processor_class = LoRAXFormersAttnProcessor |
|
else: |
|
attn_processor_class = ( |
|
LoRAAttnProcessor2_0 |
|
if hasattr(F, "scaled_dot_product_attention") |
|
else LoRAAttnProcessor |
|
) |
|
|
|
if attn_processor_class is not LoRAAttnAddedKVProcessor: |
|
attn_processors[key] = attn_processor_class( |
|
rank=rank_mapping.get("to_k_lora.down.weight"), |
|
hidden_size=hidden_size_mapping.get("to_k_lora.up.weight"), |
|
cross_attention_dim=cross_attention_dim, |
|
network_alpha=mapped_network_alphas.get(key), |
|
q_rank=rank_mapping.get("to_q_lora.down.weight"), |
|
q_hidden_size=hidden_size_mapping.get("to_q_lora.up.weight"), |
|
v_rank=rank_mapping.get("to_v_lora.down.weight"), |
|
v_hidden_size=hidden_size_mapping.get("to_v_lora.up.weight"), |
|
out_rank=rank_mapping.get("to_out_lora.down.weight"), |
|
out_hidden_size=hidden_size_mapping.get("to_out_lora.up.weight"), |
|
) |
|
else: |
|
attn_processors[key] = attn_processor_class( |
|
rank=rank_mapping.get("to_k_lora.down.weight", None), |
|
hidden_size=hidden_size_mapping.get("to_k_lora.up.weight", None), |
|
cross_attention_dim=cross_attention_dim, |
|
network_alpha=mapped_network_alphas.get(key), |
|
) |
|
|
|
attn_processors[key].load_state_dict(value_dict) |
|
|
|
elif is_custom_diffusion: |
|
custom_diffusion_grouped_dict = defaultdict(dict) |
|
for key, value in state_dict.items(): |
|
if len(value) == 0: |
|
custom_diffusion_grouped_dict[key] = {} |
|
else: |
|
if "to_out" in key: |
|
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) |
|
else: |
|
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:]) |
|
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value |
|
|
|
for key, value_dict in custom_diffusion_grouped_dict.items(): |
|
if len(value_dict) == 0: |
|
attn_processors[key] = CustomDiffusionAttnProcessor( |
|
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None |
|
) |
|
else: |
|
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1] |
|
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0] |
|
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False |
|
attn_processors[key] = CustomDiffusionAttnProcessor( |
|
train_kv=True, |
|
train_q_out=train_q_out, |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
attn_processors[key].load_state_dict(value_dict) |
|
else: |
|
raise ValueError( |
|
f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training." |
|
) |
|
|
|
|
|
attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()} |
|
non_attn_lora_layers = [(t, l.to(device=self.device, dtype=self.dtype)) for t, l in non_attn_lora_layers] |
|
|
|
|
|
self.set_attn_processor(attn_processors) |
|
|
|
|
|
for target_module, lora_layer in non_attn_lora_layers: |
|
target_module.set_lora_layer(lora_layer) |
|
|
|
def save_attn_procs( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = True, |
|
**kwargs, |
|
): |
|
r""" |
|
Save an attention processor to a directory so that it can be reloaded using the |
|
[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to save an attention processor to. Will be created if it doesn't exist. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful during distributed training and you |
|
need to call this function on all processes. In this case, set `is_main_process=True` only on the main |
|
process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful during distributed training when you need to |
|
replace `torch.save` with another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. |
|
""" |
|
from .models.attention_processor import ( |
|
CustomDiffusionAttnProcessor, |
|
CustomDiffusionXFormersAttnProcessor, |
|
) |
|
|
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
if save_function is None: |
|
if safe_serialization: |
|
|
|
def save_function(weights, filename): |
|
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) |
|
|
|
else: |
|
save_function = torch.save |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
is_custom_diffusion = any( |
|
isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)) |
|
for (_, x) in self.attn_processors.items() |
|
) |
|
if is_custom_diffusion: |
|
model_to_save = AttnProcsLayers( |
|
{ |
|
y: x |
|
for (y, x) in self.attn_processors.items() |
|
if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)) |
|
} |
|
) |
|
state_dict = model_to_save.state_dict() |
|
for name, attn in self.attn_processors.items(): |
|
if len(attn.state_dict()) == 0: |
|
state_dict[name] = {} |
|
else: |
|
model_to_save = AttnProcsLayers(self.attn_processors) |
|
state_dict = model_to_save.state_dict() |
|
|
|
if weight_name is None: |
|
if safe_serialization: |
|
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE |
|
else: |
|
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME |
|
|
|
|
|
save_function(state_dict, os.path.join(save_directory, weight_name)) |
|
logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}") |
|
|
|
|
|
class TextualInversionLoaderMixin: |
|
r""" |
|
Load textual inversion tokens and embeddings to the tokenizer and text encoder. |
|
""" |
|
|
|
def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): |
|
r""" |
|
Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to |
|
be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual |
|
inversion token or if the textual inversion token is a single vector, the input prompt is returned. |
|
|
|
Parameters: |
|
prompt (`str` or list of `str`): |
|
The prompt or prompts to guide the image generation. |
|
tokenizer (`PreTrainedTokenizer`): |
|
The tokenizer responsible for encoding the prompt into input tokens. |
|
|
|
Returns: |
|
`str` or list of `str`: The converted prompt |
|
""" |
|
if not isinstance(prompt, List): |
|
prompts = [prompt] |
|
else: |
|
prompts = prompt |
|
|
|
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts] |
|
|
|
if not isinstance(prompt, List): |
|
return prompts[0] |
|
|
|
return prompts |
|
|
|
def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): |
|
r""" |
|
Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds |
|
to a multi-vector textual inversion embedding, this function will process the prompt so that the special token |
|
is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual |
|
inversion token or a textual inversion token that is a single vector, the input prompt is simply returned. |
|
|
|
Parameters: |
|
prompt (`str`): |
|
The prompt to guide the image generation. |
|
tokenizer (`PreTrainedTokenizer`): |
|
The tokenizer responsible for encoding the prompt into input tokens. |
|
|
|
Returns: |
|
`str`: The converted prompt |
|
""" |
|
tokens = tokenizer.tokenize(prompt) |
|
unique_tokens = set(tokens) |
|
for token in unique_tokens: |
|
if token in tokenizer.added_tokens_encoder: |
|
replacement = token |
|
i = 1 |
|
while f"{token}_{i}" in tokenizer.added_tokens_encoder: |
|
replacement += f" {token}_{i}" |
|
i += 1 |
|
|
|
prompt = prompt.replace(token, replacement) |
|
|
|
return prompt |
|
|
|
def load_textual_inversion( |
|
self, |
|
pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]], |
|
token: Optional[Union[str, List[str]]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and |
|
Automatic1111 formats are supported). |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`): |
|
Can be either one of the following or a list of them: |
|
|
|
- A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a |
|
pretrained model hosted on the Hub. |
|
- A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual |
|
inversion weights. |
|
- A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights. |
|
- A [torch state |
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). |
|
|
|
token (`str` or `List[str]`, *optional*): |
|
Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a |
|
list, then `token` must also be a list of equal length. |
|
weight_name (`str`, *optional*): |
|
Name of a custom weight file. This should be used when: |
|
|
|
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight |
|
name such as `text_inv.bin`. |
|
- The saved textual inversion file is in the Automatic1111 format. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
mirror (`str`, *optional*): |
|
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not |
|
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more |
|
information. |
|
|
|
Example: |
|
|
|
To load a textual inversion embedding vector in 🤗 Diffusers format: |
|
|
|
```py |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
|
|
model_id = "runwayml/stable-diffusion-v1-5" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") |
|
|
|
pipe.load_textual_inversion("sd-concepts-library/cat-toy") |
|
|
|
prompt = "A <cat-toy> backpack" |
|
|
|
image = pipe(prompt, num_inference_steps=50).images[0] |
|
image.save("cat-backpack.png") |
|
``` |
|
|
|
To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first |
|
(for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector |
|
locally: |
|
|
|
```py |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
|
|
model_id = "runwayml/stable-diffusion-v1-5" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") |
|
|
|
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2") |
|
|
|
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details." |
|
|
|
image = pipe(prompt, num_inference_steps=50).images[0] |
|
image.save("character.png") |
|
``` |
|
|
|
""" |
|
if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer): |
|
raise ValueError( |
|
f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling" |
|
f" `{self.load_textual_inversion.__name__}`" |
|
) |
|
|
|
if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel): |
|
raise ValueError( |
|
f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling" |
|
f" `{self.load_textual_inversion.__name__}`" |
|
) |
|
|
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
weight_name = kwargs.pop("weight_name", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = True |
|
allow_pickle = True |
|
|
|
user_agent = { |
|
"file_type": "text_inversion", |
|
"framework": "pytorch", |
|
} |
|
|
|
if not isinstance(pretrained_model_name_or_path, list): |
|
pretrained_model_name_or_paths = [pretrained_model_name_or_path] |
|
else: |
|
pretrained_model_name_or_paths = pretrained_model_name_or_path |
|
|
|
if isinstance(token, str): |
|
tokens = [token] |
|
elif token is None: |
|
tokens = [None] * len(pretrained_model_name_or_paths) |
|
else: |
|
tokens = token |
|
|
|
if len(pretrained_model_name_or_paths) != len(tokens): |
|
raise ValueError( |
|
f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}" |
|
f"Make sure both lists have the same length." |
|
) |
|
|
|
valid_tokens = [t for t in tokens if t is not None] |
|
if len(set(valid_tokens)) < len(valid_tokens): |
|
raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}") |
|
|
|
token_ids_and_embeddings = [] |
|
|
|
for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens): |
|
if not isinstance(pretrained_model_name_or_path, dict): |
|
|
|
model_file = None |
|
|
|
if (use_safetensors and weight_name is None) or ( |
|
weight_name is not None and weight_name.endswith(".safetensors") |
|
): |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=weight_name or TEXT_INVERSION_NAME_SAFE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = safetensors.torch.load_file(model_file, device="cpu") |
|
except Exception as e: |
|
if not allow_pickle: |
|
raise e |
|
|
|
model_file = None |
|
|
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=weight_name or TEXT_INVERSION_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
else: |
|
state_dict = pretrained_model_name_or_path |
|
|
|
|
|
loaded_token = None |
|
if isinstance(state_dict, torch.Tensor): |
|
if token is None: |
|
raise ValueError( |
|
"You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`." |
|
) |
|
embedding = state_dict |
|
elif len(state_dict) == 1: |
|
|
|
loaded_token, embedding = next(iter(state_dict.items())) |
|
elif "string_to_param" in state_dict: |
|
|
|
loaded_token = state_dict["name"] |
|
embedding = state_dict["string_to_param"]["*"] |
|
|
|
if token is not None and loaded_token != token: |
|
logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.") |
|
else: |
|
token = loaded_token |
|
|
|
embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device) |
|
|
|
|
|
vocab = self.tokenizer.get_vocab() |
|
if token in vocab: |
|
raise ValueError( |
|
f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder." |
|
) |
|
elif f"{token}_1" in vocab: |
|
multi_vector_tokens = [token] |
|
i = 1 |
|
while f"{token}_{i}" in self.tokenizer.added_tokens_encoder: |
|
multi_vector_tokens.append(f"{token}_{i}") |
|
i += 1 |
|
|
|
raise ValueError( |
|
f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder." |
|
) |
|
|
|
is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1 |
|
|
|
if is_multi_vector: |
|
tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])] |
|
embeddings = [e for e in embedding] |
|
else: |
|
tokens = [token] |
|
embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding] |
|
|
|
|
|
self.tokenizer.add_tokens(tokens) |
|
token_ids = self.tokenizer.convert_tokens_to_ids(tokens) |
|
token_ids_and_embeddings += zip(token_ids, embeddings) |
|
|
|
logger.info(f"Loaded textual inversion embedding for {token}.") |
|
|
|
|
|
self.text_encoder.resize_token_embeddings(len(self.tokenizer)) |
|
for token_id, embedding in token_ids_and_embeddings: |
|
self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding |
|
|
|
|
|
class LoraLoaderMixin: |
|
r""" |
|
Load LoRA layers into [`UNet2DConditionModel`] and |
|
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). |
|
""" |
|
text_encoder_name = TEXT_ENCODER_NAME |
|
unet_name = UNET_NAME |
|
|
|
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): |
|
""" |
|
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and |
|
`self.text_encoder`. |
|
|
|
All kwargs are forwarded to `self.lora_state_dict`. |
|
|
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. |
|
|
|
See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into |
|
`self.unet`. |
|
|
|
See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded |
|
into `self.text_encoder`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`]. |
|
kwargs (`dict`, *optional*): |
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`]. |
|
""" |
|
state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) |
|
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) |
|
self.load_lora_into_text_encoder( |
|
state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder, |
|
lora_scale=self.lora_scale, |
|
) |
|
|
|
@classmethod |
|
def lora_state_dict( |
|
cls, |
|
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], |
|
**kwargs, |
|
): |
|
r""" |
|
Return state dict for lora weights and the network alphas. |
|
|
|
<Tip warning={true}> |
|
|
|
We support loading A1111 formatted LoRA checkpoints in a limited capacity. |
|
|
|
This function is experimental and might change in the future. |
|
|
|
</Tip> |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved |
|
with [`ModelMixin.save_pretrained`]. |
|
- A [torch state |
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
mirror (`str`, *optional*): |
|
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not |
|
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more |
|
information. |
|
|
|
""" |
|
|
|
|
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
weight_name = kwargs.pop("weight_name", None) |
|
unet_config = kwargs.pop("unet_config", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = True |
|
allow_pickle = True |
|
|
|
user_agent = { |
|
"file_type": "attn_procs_weights", |
|
"framework": "pytorch", |
|
} |
|
|
|
model_file = None |
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
|
|
if (use_safetensors and weight_name is None) or ( |
|
weight_name is not None and weight_name.endswith(".safetensors") |
|
): |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = safetensors.torch.load_file(model_file, device="cpu") |
|
except (IOError, safetensors.SafetensorError) as e: |
|
if not allow_pickle: |
|
raise e |
|
|
|
model_file = None |
|
pass |
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
network_alphas = None |
|
if all( |
|
( |
|
k.startswith("lora_te_") |
|
or k.startswith("lora_unet_") |
|
or k.startswith("lora_te1_") |
|
or k.startswith("lora_te2_") |
|
) |
|
for k in state_dict.keys() |
|
): |
|
|
|
if unet_config is not None: |
|
|
|
state_dict = cls._map_sgm_blocks_to_diffusers(state_dict, unet_config) |
|
state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict) |
|
|
|
return state_dict, network_alphas |
|
|
|
@classmethod |
|
def _map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5): |
|
is_all_unet = all(k.startswith("lora_unet") for k in state_dict) |
|
new_state_dict = {} |
|
inner_block_map = ["resnets", "attentions", "upsamplers"] |
|
|
|
|
|
input_block_ids, middle_block_ids, output_block_ids = set(), set(), set() |
|
for layer in state_dict: |
|
if "text" not in layer: |
|
layer_id = int(layer.split(delimiter)[:block_slice_pos][-1]) |
|
if "input_blocks" in layer: |
|
input_block_ids.add(layer_id) |
|
elif "middle_block" in layer: |
|
middle_block_ids.add(layer_id) |
|
elif "output_blocks" in layer: |
|
output_block_ids.add(layer_id) |
|
else: |
|
raise ValueError("Checkpoint not supported") |
|
|
|
input_blocks = { |
|
layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key] |
|
for layer_id in input_block_ids |
|
} |
|
middle_blocks = { |
|
layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key] |
|
for layer_id in middle_block_ids |
|
} |
|
output_blocks = { |
|
layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key] |
|
for layer_id in output_block_ids |
|
} |
|
|
|
|
|
for i in input_block_ids: |
|
block_id = (i - 1) // (unet_config.layers_per_block + 1) |
|
layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1) |
|
|
|
for key in input_blocks[i]: |
|
inner_block_id = int(key.split(delimiter)[block_slice_pos]) |
|
inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers" |
|
inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0" |
|
new_key = delimiter.join( |
|
key.split(delimiter)[: block_slice_pos - 1] |
|
+ [str(block_id), inner_block_key, inner_layers_in_block] |
|
+ key.split(delimiter)[block_slice_pos + 1 :] |
|
) |
|
new_state_dict[new_key] = state_dict.pop(key) |
|
|
|
for i in middle_block_ids: |
|
key_part = None |
|
if i == 0: |
|
key_part = [inner_block_map[0], "0"] |
|
elif i == 1: |
|
key_part = [inner_block_map[1], "0"] |
|
elif i == 2: |
|
key_part = [inner_block_map[0], "1"] |
|
else: |
|
raise ValueError(f"Invalid middle block id {i}.") |
|
|
|
for key in middle_blocks[i]: |
|
new_key = delimiter.join( |
|
key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:] |
|
) |
|
new_state_dict[new_key] = state_dict.pop(key) |
|
|
|
for i in output_block_ids: |
|
block_id = i // (unet_config.layers_per_block + 1) |
|
layer_in_block_id = i % (unet_config.layers_per_block + 1) |
|
|
|
for key in output_blocks[i]: |
|
inner_block_id = int(key.split(delimiter)[block_slice_pos]) |
|
inner_block_key = inner_block_map[inner_block_id] |
|
inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0" |
|
new_key = delimiter.join( |
|
key.split(delimiter)[: block_slice_pos - 1] |
|
+ [str(block_id), inner_block_key, inner_layers_in_block] |
|
+ key.split(delimiter)[block_slice_pos + 1 :] |
|
) |
|
new_state_dict[new_key] = state_dict.pop(key) |
|
|
|
if is_all_unet and len(state_dict) > 0: |
|
raise ValueError("At this point all state dict entries have to be converted.") |
|
else: |
|
|
|
for k, v in state_dict.items(): |
|
new_state_dict.update({k: v}) |
|
|
|
return new_state_dict |
|
|
|
@classmethod |
|
def load_lora_into_unet(cls, state_dict, network_alphas, unet): |
|
""" |
|
This will load the LoRA layers specified in `state_dict` into `unet`. |
|
|
|
Parameters: |
|
state_dict (`dict`): |
|
A standard state dict containing the lora layer parameters. The keys can either be indexed directly |
|
into the unet or prefixed with an additional `unet` which can be used to distinguish between text |
|
encoder lora layers. |
|
network_alphas (`Dict[str, float]`): |
|
See `LoRALinearLayer` for more details. |
|
unet (`UNet2DConditionModel`): |
|
The UNet model to load the LoRA layers into. |
|
""" |
|
|
|
|
|
|
|
keys = list(state_dict.keys()) |
|
|
|
if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys): |
|
|
|
logger.info(f"Loading {cls.unet_name}.") |
|
|
|
unet_keys = [k for k in keys if k.startswith(cls.unet_name)] |
|
state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys} |
|
|
|
if network_alphas is not None: |
|
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)] |
|
network_alphas = { |
|
k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys |
|
} |
|
|
|
else: |
|
|
|
|
|
warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`." |
|
warnings.warn(warn_message) |
|
|
|
|
|
unet.load_attn_procs(state_dict, network_alphas=network_alphas) |
|
|
|
@classmethod |
|
def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0): |
|
""" |
|
This will load the LoRA layers specified in `state_dict` into `text_encoder` |
|
|
|
Parameters: |
|
state_dict (`dict`): |
|
A standard state dict containing the lora layer parameters. The key should be prefixed with an |
|
additional `text_encoder` to distinguish between unet lora layers. |
|
network_alphas (`Dict[str, float]`): |
|
See `LoRALinearLayer` for more details. |
|
text_encoder (`CLIPTextModel`): |
|
The text encoder model to load the LoRA layers into. |
|
prefix (`str`): |
|
Expected prefix of the `text_encoder` in the `state_dict`. |
|
lora_scale (`float`): |
|
How much to scale the output of the lora linear layer before it is added with the output of the regular |
|
lora layer. |
|
""" |
|
|
|
|
|
|
|
|
|
keys = list(state_dict.keys()) |
|
prefix = cls.text_encoder_name if prefix is None else prefix |
|
|
|
|
|
if any(cls.text_encoder_name in key for key in keys): |
|
|
|
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix] |
|
text_encoder_lora_state_dict = { |
|
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys |
|
} |
|
|
|
if len(text_encoder_lora_state_dict) > 0: |
|
logger.info(f"Loading {prefix}.") |
|
|
|
if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, _ in text_encoder_attn_modules(text_encoder): |
|
text_encoder_lora_state_dict[ |
|
f"{name}.q_proj.lora_linear_layer.up.weight" |
|
] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight") |
|
text_encoder_lora_state_dict[ |
|
f"{name}.k_proj.lora_linear_layer.up.weight" |
|
] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight") |
|
text_encoder_lora_state_dict[ |
|
f"{name}.v_proj.lora_linear_layer.up.weight" |
|
] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight") |
|
text_encoder_lora_state_dict[ |
|
f"{name}.out_proj.lora_linear_layer.up.weight" |
|
] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight") |
|
|
|
text_encoder_lora_state_dict[ |
|
f"{name}.q_proj.lora_linear_layer.down.weight" |
|
] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight") |
|
text_encoder_lora_state_dict[ |
|
f"{name}.k_proj.lora_linear_layer.down.weight" |
|
] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight") |
|
text_encoder_lora_state_dict[ |
|
f"{name}.v_proj.lora_linear_layer.down.weight" |
|
] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight") |
|
text_encoder_lora_state_dict[ |
|
f"{name}.out_proj.lora_linear_layer.down.weight" |
|
] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight") |
|
|
|
rank = text_encoder_lora_state_dict[ |
|
"text_model.encoder.layers.0.self_attn.out_proj.lora_linear_layer.up.weight" |
|
].shape[1] |
|
patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys()) |
|
|
|
if network_alphas is not None: |
|
alpha_keys = [ |
|
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix |
|
] |
|
network_alphas = { |
|
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys |
|
} |
|
|
|
cls._modify_text_encoder( |
|
text_encoder, |
|
lora_scale, |
|
network_alphas, |
|
rank=rank, |
|
patch_mlp=patch_mlp, |
|
) |
|
|
|
|
|
text_encoder_lora_state_dict = { |
|
k: v.to(device=text_encoder.device, dtype=text_encoder.dtype) |
|
for k, v in text_encoder_lora_state_dict.items() |
|
} |
|
load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False) |
|
if len(load_state_dict_results.unexpected_keys) != 0: |
|
raise ValueError( |
|
f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}" |
|
) |
|
|
|
@property |
|
def lora_scale(self) -> float: |
|
|
|
|
|
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0 |
|
|
|
def _remove_text_encoder_monkey_patch(self): |
|
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) |
|
|
|
@classmethod |
|
def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder): |
|
for _, attn_module in text_encoder_attn_modules(text_encoder): |
|
if isinstance(attn_module.q_proj, PatchedLoraProjection): |
|
attn_module.q_proj = attn_module.q_proj.regular_linear_layer |
|
attn_module.k_proj = attn_module.k_proj.regular_linear_layer |
|
attn_module.v_proj = attn_module.v_proj.regular_linear_layer |
|
attn_module.out_proj = attn_module.out_proj.regular_linear_layer |
|
|
|
for _, mlp_module in text_encoder_mlp_modules(text_encoder): |
|
if isinstance(mlp_module.fc1, PatchedLoraProjection): |
|
mlp_module.fc1 = mlp_module.fc1.regular_linear_layer |
|
mlp_module.fc2 = mlp_module.fc2.regular_linear_layer |
|
|
|
@classmethod |
|
def _modify_text_encoder( |
|
cls, |
|
text_encoder, |
|
lora_scale=1, |
|
network_alphas=None, |
|
rank=4, |
|
dtype=None, |
|
patch_mlp=False, |
|
): |
|
r""" |
|
Monkey-patches the forward passes of attention modules of the text encoder. |
|
""" |
|
|
|
|
|
cls._remove_text_encoder_monkey_patch_classmethod(text_encoder) |
|
|
|
lora_parameters = [] |
|
network_alphas = {} if network_alphas is None else network_alphas |
|
is_network_alphas_populated = len(network_alphas) > 0 |
|
|
|
for name, attn_module in text_encoder_attn_modules(text_encoder): |
|
query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None) |
|
key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None) |
|
value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None) |
|
out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None) |
|
|
|
attn_module.q_proj = PatchedLoraProjection( |
|
attn_module.q_proj, lora_scale, network_alpha=query_alpha, rank=rank, dtype=dtype |
|
) |
|
lora_parameters.extend(attn_module.q_proj.lora_linear_layer.parameters()) |
|
|
|
attn_module.k_proj = PatchedLoraProjection( |
|
attn_module.k_proj, lora_scale, network_alpha=key_alpha, rank=rank, dtype=dtype |
|
) |
|
lora_parameters.extend(attn_module.k_proj.lora_linear_layer.parameters()) |
|
|
|
attn_module.v_proj = PatchedLoraProjection( |
|
attn_module.v_proj, lora_scale, network_alpha=value_alpha, rank=rank, dtype=dtype |
|
) |
|
lora_parameters.extend(attn_module.v_proj.lora_linear_layer.parameters()) |
|
|
|
attn_module.out_proj = PatchedLoraProjection( |
|
attn_module.out_proj, lora_scale, network_alpha=out_alpha, rank=rank, dtype=dtype |
|
) |
|
lora_parameters.extend(attn_module.out_proj.lora_linear_layer.parameters()) |
|
|
|
if patch_mlp: |
|
for name, mlp_module in text_encoder_mlp_modules(text_encoder): |
|
fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha") |
|
fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha") |
|
|
|
mlp_module.fc1 = PatchedLoraProjection( |
|
mlp_module.fc1, lora_scale, network_alpha=fc1_alpha, rank=rank, dtype=dtype |
|
) |
|
lora_parameters.extend(mlp_module.fc1.lora_linear_layer.parameters()) |
|
|
|
mlp_module.fc2 = PatchedLoraProjection( |
|
mlp_module.fc2, lora_scale, network_alpha=fc2_alpha, rank=rank, dtype=dtype |
|
) |
|
lora_parameters.extend(mlp_module.fc2.lora_linear_layer.parameters()) |
|
|
|
if is_network_alphas_populated and len(network_alphas) > 0: |
|
raise ValueError( |
|
f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}" |
|
) |
|
|
|
return lora_parameters |
|
|
|
@classmethod |
|
def save_lora_weights( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = True, |
|
): |
|
r""" |
|
Save the LoRA parameters corresponding to the UNet and text encoder. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to save LoRA parameters to. Will be created if it doesn't exist. |
|
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): |
|
State dict of the LoRA layers corresponding to the `unet`. |
|
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): |
|
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text |
|
encoder LoRA state dict because it comes from 🤗 Transformers. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful during distributed training and you |
|
need to call this function on all processes. In this case, set `is_main_process=True` only on the main |
|
process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful during distributed training when you need to |
|
replace `torch.save` with another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. |
|
""" |
|
|
|
state_dict = {} |
|
|
|
|
|
if unet_lora_layers is not None: |
|
weights = ( |
|
unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers |
|
) |
|
|
|
unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()} |
|
state_dict.update(unet_lora_state_dict) |
|
|
|
if text_encoder_lora_layers is not None: |
|
weights = ( |
|
text_encoder_lora_layers.state_dict() |
|
if isinstance(text_encoder_lora_layers, torch.nn.Module) |
|
else text_encoder_lora_layers |
|
) |
|
|
|
text_encoder_lora_state_dict = { |
|
f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items() |
|
} |
|
state_dict.update(text_encoder_lora_state_dict) |
|
|
|
|
|
self.write_lora_layers( |
|
state_dict=state_dict, |
|
save_directory=save_directory, |
|
is_main_process=is_main_process, |
|
weight_name=weight_name, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
def write_lora_layers( |
|
state_dict: Dict[str, torch.Tensor], |
|
save_directory: str, |
|
is_main_process: bool, |
|
weight_name: str, |
|
save_function: Callable, |
|
safe_serialization: bool, |
|
): |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
if save_function is None: |
|
if safe_serialization: |
|
|
|
def save_function(weights, filename): |
|
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) |
|
|
|
else: |
|
save_function = torch.save |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if weight_name is None: |
|
if safe_serialization: |
|
weight_name = LORA_WEIGHT_NAME_SAFE |
|
else: |
|
weight_name = LORA_WEIGHT_NAME |
|
|
|
save_function(state_dict, os.path.join(save_directory, weight_name)) |
|
logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}") |
|
|
|
@classmethod |
|
def _convert_kohya_lora_to_diffusers(cls, state_dict): |
|
unet_state_dict = {} |
|
te_state_dict = {} |
|
te2_state_dict = {} |
|
network_alphas = {} |
|
|
|
|
|
lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")] |
|
for key in lora_keys: |
|
lora_name = key.split(".")[0] |
|
lora_name_up = lora_name + ".lora_up.weight" |
|
lora_name_alpha = lora_name + ".alpha" |
|
|
|
if lora_name.startswith("lora_unet_"): |
|
diffusers_name = key.replace("lora_unet_", "").replace("_", ".") |
|
|
|
if "input.blocks" in diffusers_name: |
|
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks") |
|
else: |
|
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks") |
|
|
|
if "middle.block" in diffusers_name: |
|
diffusers_name = diffusers_name.replace("middle.block", "mid_block") |
|
else: |
|
diffusers_name = diffusers_name.replace("mid.block", "mid_block") |
|
if "output.blocks" in diffusers_name: |
|
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks") |
|
else: |
|
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks") |
|
|
|
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks") |
|
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora") |
|
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora") |
|
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora") |
|
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora") |
|
diffusers_name = diffusers_name.replace("proj.in", "proj_in") |
|
diffusers_name = diffusers_name.replace("proj.out", "proj_out") |
|
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj") |
|
|
|
|
|
if "emb" in diffusers_name: |
|
pattern = r"\.\d+(?=\D*$)" |
|
diffusers_name = re.sub(pattern, "", diffusers_name, count=1) |
|
if ".in." in diffusers_name: |
|
diffusers_name = diffusers_name.replace("in.layers.2", "conv1") |
|
if ".out." in diffusers_name: |
|
diffusers_name = diffusers_name.replace("out.layers.3", "conv2") |
|
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name: |
|
diffusers_name = diffusers_name.replace("op", "conv") |
|
if "skip" in diffusers_name: |
|
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut") |
|
|
|
if "transformer_blocks" in diffusers_name: |
|
if "attn1" in diffusers_name or "attn2" in diffusers_name: |
|
diffusers_name = diffusers_name.replace("attn1", "attn1.processor") |
|
diffusers_name = diffusers_name.replace("attn2", "attn2.processor") |
|
unet_state_dict[diffusers_name] = state_dict.pop(key) |
|
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
elif "ff" in diffusers_name: |
|
unet_state_dict[diffusers_name] = state_dict.pop(key) |
|
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
elif any(key in diffusers_name for key in ("proj_in", "proj_out")): |
|
unet_state_dict[diffusers_name] = state_dict.pop(key) |
|
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
else: |
|
unet_state_dict[diffusers_name] = state_dict.pop(key) |
|
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
|
|
elif lora_name.startswith("lora_te_"): |
|
diffusers_name = key.replace("lora_te_", "").replace("_", ".") |
|
diffusers_name = diffusers_name.replace("text.model", "text_model") |
|
diffusers_name = diffusers_name.replace("self.attn", "self_attn") |
|
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora") |
|
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora") |
|
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora") |
|
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora") |
|
if "self_attn" in diffusers_name: |
|
te_state_dict[diffusers_name] = state_dict.pop(key) |
|
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
elif "mlp" in diffusers_name: |
|
|
|
|
|
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.") |
|
te_state_dict[diffusers_name] = state_dict.pop(key) |
|
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
|
|
|
|
elif lora_name.startswith("lora_te1_"): |
|
diffusers_name = key.replace("lora_te1_", "").replace("_", ".") |
|
diffusers_name = diffusers_name.replace("text.model", "text_model") |
|
diffusers_name = diffusers_name.replace("self.attn", "self_attn") |
|
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora") |
|
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora") |
|
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora") |
|
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora") |
|
if "self_attn" in diffusers_name: |
|
te_state_dict[diffusers_name] = state_dict.pop(key) |
|
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
elif "mlp" in diffusers_name: |
|
|
|
|
|
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.") |
|
te_state_dict[diffusers_name] = state_dict.pop(key) |
|
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
|
|
|
|
elif lora_name.startswith("lora_te2_"): |
|
diffusers_name = key.replace("lora_te2_", "").replace("_", ".") |
|
diffusers_name = diffusers_name.replace("text.model", "text_model") |
|
diffusers_name = diffusers_name.replace("self.attn", "self_attn") |
|
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora") |
|
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora") |
|
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora") |
|
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora") |
|
if "self_attn" in diffusers_name: |
|
te2_state_dict[diffusers_name] = state_dict.pop(key) |
|
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
elif "mlp" in diffusers_name: |
|
|
|
|
|
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.") |
|
te2_state_dict[diffusers_name] = state_dict.pop(key) |
|
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) |
|
|
|
|
|
if lora_name_alpha in state_dict: |
|
alpha = state_dict.pop(lora_name_alpha).item() |
|
if lora_name_alpha.startswith("lora_unet_"): |
|
prefix = "unet." |
|
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")): |
|
prefix = "text_encoder." |
|
else: |
|
prefix = "text_encoder_2." |
|
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha" |
|
network_alphas.update({new_name: alpha}) |
|
|
|
if len(state_dict) > 0: |
|
raise ValueError( |
|
f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}" |
|
) |
|
|
|
logger.info("Kohya-style checkpoint detected.") |
|
unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()} |
|
te_state_dict = { |
|
f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items() |
|
} |
|
te2_state_dict = ( |
|
{f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()} |
|
if len(te2_state_dict) > 0 |
|
else None |
|
) |
|
if te2_state_dict is not None: |
|
te_state_dict.update(te2_state_dict) |
|
|
|
new_state_dict = {**unet_state_dict, **te_state_dict} |
|
return new_state_dict, network_alphas |
|
|
|
def unload_lora_weights(self): |
|
""" |
|
Unloads the LoRA parameters. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> # Assuming `pipeline` is already loaded with the LoRA parameters. |
|
>>> pipeline.unload_lora_weights() |
|
>>> ... |
|
``` |
|
""" |
|
from .models.attention_processor import ( |
|
LORA_ATTENTION_PROCESSORS, |
|
AttnProcessor, |
|
AttnProcessor2_0, |
|
LoRAAttnAddedKVProcessor, |
|
LoRAAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
|
|
unet_attention_classes = {type(processor) for _, processor in self.unet.attn_processors.items()} |
|
|
|
if unet_attention_classes.issubset(LORA_ATTENTION_PROCESSORS): |
|
|
|
|
|
if len(unet_attention_classes) > 1 or LoRAAttnAddedKVProcessor in unet_attention_classes: |
|
self.unet.set_default_attn_processor() |
|
else: |
|
regular_attention_classes = { |
|
LoRAAttnProcessor: AttnProcessor, |
|
LoRAAttnProcessor2_0: AttnProcessor2_0, |
|
LoRAXFormersAttnProcessor: XFormersAttnProcessor, |
|
} |
|
[attention_proc_class] = unet_attention_classes |
|
self.unet.set_attn_processor(regular_attention_classes[attention_proc_class]()) |
|
|
|
for _, module in self.unet.named_modules(): |
|
if hasattr(module, "set_lora_layer"): |
|
module.set_lora_layer(None) |
|
|
|
|
|
self._remove_text_encoder_monkey_patch() |
|
|
|
|
|
class FromSingleFileMixin: |
|
""" |
|
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. |
|
""" |
|
|
|
@classmethod |
|
def from_ckpt(cls, *args, **kwargs): |
|
deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead." |
|
deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False) |
|
return cls.from_single_file(*args, **kwargs) |
|
|
|
@classmethod |
|
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors` |
|
format. The pipeline is set in evaluation mode (`model.eval()`) by default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A link to the `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. |
|
- A path to a *file* containing all pipeline weights. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the safetensors weights are downloaded if they're available **and** if the |
|
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors |
|
weights. If set to `False`, safetensors weights are not loaded. |
|
extract_ema (`bool`, *optional*, defaults to `False`): |
|
Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield |
|
higher quality images for inference. Non-EMA weights are usually better for continuing finetuning. |
|
upcast_attention (`bool`, *optional*, defaults to `None`): |
|
Whether the attention computation should always be upcasted. |
|
image_size (`int`, *optional*, defaults to 512): |
|
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable |
|
Diffusion v2 base model. Use 768 for Stable Diffusion v2. |
|
prediction_type (`str`, *optional*): |
|
The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and |
|
the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2. |
|
num_in_channels (`int`, *optional*, defaults to `None`): |
|
The number of input channels. If `None`, it is automatically inferred. |
|
scheduler_type (`str`, *optional*, defaults to `"pndm"`): |
|
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm", |
|
"ddim"]`. |
|
load_safety_checker (`bool`, *optional*, defaults to `True`): |
|
Whether to load the safety checker or not. |
|
text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`): |
|
An instance of `CLIPTextModel` to use, specifically the |
|
[clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this |
|
parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed. |
|
vae (`AutoencoderKL`, *optional*, defaults to `None`): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If |
|
this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed. |
|
tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`): |
|
An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance |
|
of `CLIPTokenizer` by itself if needed. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (for example the pipeline components of the |
|
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` |
|
method. See example below for more information. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import StableDiffusionPipeline |
|
|
|
>>> # Download pipeline from huggingface.co and cache. |
|
>>> pipeline = StableDiffusionPipeline.from_single_file( |
|
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" |
|
... ) |
|
|
|
>>> # Download pipeline from local file |
|
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt |
|
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly") |
|
|
|
>>> # Enable float16 and move to GPU |
|
>>> pipeline = StableDiffusionPipeline.from_single_file( |
|
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", |
|
... torch_dtype=torch.float16, |
|
... ) |
|
>>> pipeline.to("cuda") |
|
``` |
|
""" |
|
|
|
from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt |
|
|
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
extract_ema = kwargs.pop("extract_ema", False) |
|
image_size = kwargs.pop("image_size", None) |
|
scheduler_type = kwargs.pop("scheduler_type", "pndm") |
|
num_in_channels = kwargs.pop("num_in_channels", None) |
|
upcast_attention = kwargs.pop("upcast_attention", None) |
|
load_safety_checker = kwargs.pop("load_safety_checker", True) |
|
prediction_type = kwargs.pop("prediction_type", None) |
|
text_encoder = kwargs.pop("text_encoder", None) |
|
vae = kwargs.pop("vae", None) |
|
controlnet = kwargs.pop("controlnet", None) |
|
tokenizer = kwargs.pop("tokenizer", None) |
|
|
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
pipeline_name = cls.__name__ |
|
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] |
|
from_safetensors = file_extension == "safetensors" |
|
|
|
if from_safetensors and use_safetensors is False: |
|
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") |
|
|
|
|
|
stable_unclip = None |
|
model_type = None |
|
|
|
if pipeline_name in [ |
|
"StableDiffusionControlNetPipeline", |
|
"StableDiffusionControlNetImg2ImgPipeline", |
|
"StableDiffusionControlNetInpaintPipeline", |
|
]: |
|
from .models.controlnet import ControlNetModel |
|
from .pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
|
|
|
|
if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)): |
|
raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.") |
|
elif "StableDiffusion" in pipeline_name: |
|
|
|
pass |
|
elif pipeline_name == "StableUnCLIPPipeline": |
|
model_type = "FrozenOpenCLIPEmbedder" |
|
stable_unclip = "txt2img" |
|
elif pipeline_name == "StableUnCLIPImg2ImgPipeline": |
|
model_type = "FrozenOpenCLIPEmbedder" |
|
stable_unclip = "img2img" |
|
elif pipeline_name == "PaintByExamplePipeline": |
|
model_type = "PaintByExample" |
|
elif pipeline_name == "LDMTextToImagePipeline": |
|
model_type = "LDMTextToImage" |
|
else: |
|
raise ValueError(f"Unhandled pipeline class: {pipeline_name}") |
|
|
|
|
|
has_valid_url_prefix = False |
|
valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"] |
|
for prefix in valid_url_prefixes: |
|
if pretrained_model_link_or_path.startswith(prefix): |
|
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] |
|
has_valid_url_prefix = True |
|
|
|
|
|
ckpt_path = Path(pretrained_model_link_or_path) |
|
if not ckpt_path.is_file(): |
|
if not has_valid_url_prefix: |
|
raise ValueError( |
|
f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}" |
|
) |
|
|
|
|
|
repo_id = "/".join(ckpt_path.parts[:2]) |
|
file_path = "/".join(ckpt_path.parts[2:]) |
|
|
|
if file_path.startswith("blob/"): |
|
file_path = file_path[len("blob/") :] |
|
|
|
if file_path.startswith("main/"): |
|
file_path = file_path[len("main/") :] |
|
|
|
pretrained_model_link_or_path = hf_hub_download( |
|
repo_id, |
|
filename=file_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
force_download=force_download, |
|
) |
|
|
|
pipe = download_from_original_stable_diffusion_ckpt( |
|
pretrained_model_link_or_path, |
|
pipeline_class=cls, |
|
model_type=model_type, |
|
stable_unclip=stable_unclip, |
|
controlnet=controlnet, |
|
from_safetensors=from_safetensors, |
|
extract_ema=extract_ema, |
|
image_size=image_size, |
|
scheduler_type=scheduler_type, |
|
num_in_channels=num_in_channels, |
|
upcast_attention=upcast_attention, |
|
load_safety_checker=load_safety_checker, |
|
prediction_type=prediction_type, |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
if torch_dtype is not None: |
|
pipe.to(torch_dtype=torch_dtype) |
|
|
|
return pipe |
|
|
|
|
|
class FromOriginalVAEMixin: |
|
@classmethod |
|
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or |
|
`.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by |
|
default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A link to the `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. |
|
- A path to a *file* containing all pipeline weights. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to True, the model |
|
won't be downloaded from the Hub. |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
image_size (`int`, *optional*, defaults to 512): |
|
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable |
|
Diffusion v2 base model. Use 768 for Stable Diffusion v2. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the safetensors weights are downloaded if they're available **and** if the |
|
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors |
|
weights. If set to `False`, safetensors weights are not loaded. |
|
upcast_attention (`bool`, *optional*, defaults to `None`): |
|
Whether the attention computation should always be upcasted. |
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z |
|
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution |
|
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (for example the pipeline components of the |
|
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` |
|
method. See example below for more information. |
|
|
|
<Tip warning={true}> |
|
|
|
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load |
|
a VAE that does accompany a stable diffusion model of v2 or higher or SDXL. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
```py |
|
from diffusers import AutoencoderKL |
|
|
|
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file |
|
model = AutoencoderKL.from_single_file(url) |
|
``` |
|
""" |
|
if not is_omegaconf_available(): |
|
raise ValueError(BACKENDS_MAPPING["omegaconf"][1]) |
|
|
|
from omegaconf import OmegaConf |
|
|
|
from .models import AutoencoderKL |
|
|
|
|
|
from .pipelines.stable_diffusion.convert_from_ckpt import ( |
|
convert_ldm_vae_checkpoint, |
|
create_vae_diffusers_config, |
|
) |
|
|
|
config_file = kwargs.pop("config_file", None) |
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
image_size = kwargs.pop("image_size", None) |
|
scaling_factor = kwargs.pop("scaling_factor", None) |
|
kwargs.pop("upcast_attention", None) |
|
|
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] |
|
from_safetensors = file_extension == "safetensors" |
|
|
|
if from_safetensors and use_safetensors is False: |
|
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") |
|
|
|
|
|
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]: |
|
if pretrained_model_link_or_path.startswith(prefix): |
|
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] |
|
|
|
|
|
ckpt_path = Path(pretrained_model_link_or_path) |
|
if not ckpt_path.is_file(): |
|
|
|
repo_id = "/".join(ckpt_path.parts[:2]) |
|
file_path = "/".join(ckpt_path.parts[2:]) |
|
|
|
if file_path.startswith("blob/"): |
|
file_path = file_path[len("blob/") :] |
|
|
|
if file_path.startswith("main/"): |
|
file_path = file_path[len("main/") :] |
|
|
|
pretrained_model_link_or_path = hf_hub_download( |
|
repo_id, |
|
filename=file_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
force_download=force_download, |
|
) |
|
|
|
if from_safetensors: |
|
from safetensors import safe_open |
|
|
|
checkpoint = {} |
|
with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
checkpoint[key] = f.get_tensor(key) |
|
else: |
|
checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu") |
|
|
|
if "state_dict" in checkpoint: |
|
checkpoint = checkpoint["state_dict"] |
|
|
|
if config_file is None: |
|
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" |
|
config_file = BytesIO(requests.get(config_url).content) |
|
|
|
original_config = OmegaConf.load(config_file) |
|
|
|
|
|
image_size = image_size or 512 |
|
|
|
vae_config = create_vae_diffusers_config(original_config, image_size=image_size) |
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) |
|
|
|
if scaling_factor is None: |
|
if ( |
|
"model" in original_config |
|
and "params" in original_config.model |
|
and "scale_factor" in original_config.model.params |
|
): |
|
vae_scaling_factor = original_config.model.params.scale_factor |
|
else: |
|
vae_scaling_factor = 0.18215 |
|
|
|
vae_config["scaling_factor"] = vae_scaling_factor |
|
|
|
ctx = init_empty_weights if is_accelerate_available() else nullcontext |
|
with ctx(): |
|
vae = AutoencoderKL(**vae_config) |
|
|
|
if is_accelerate_available(): |
|
for param_name, param in converted_vae_checkpoint.items(): |
|
set_module_tensor_to_device(vae, param_name, "cpu", value=param) |
|
else: |
|
vae.load_state_dict(converted_vae_checkpoint) |
|
|
|
if torch_dtype is not None: |
|
vae.to(torch_dtype=torch_dtype) |
|
|
|
return vae |
|
|
|
|
|
class FromOriginalControlnetMixin: |
|
@classmethod |
|
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or |
|
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A link to the `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. |
|
- A path to a *file* containing all pipeline weights. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to True, the model |
|
won't be downloaded from the Hub. |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the safetensors weights are downloaded if they're available **and** if the |
|
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors |
|
weights. If set to `False`, safetensors weights are not loaded. |
|
image_size (`int`, *optional*, defaults to 512): |
|
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable |
|
Diffusion v2 base model. Use 768 for Stable Diffusion v2. |
|
upcast_attention (`bool`, *optional*, defaults to `None`): |
|
Whether the attention computation should always be upcasted. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (for example the pipeline components of the |
|
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` |
|
method. See example below for more information. |
|
|
|
Examples: |
|
|
|
```py |
|
from diffusers import StableDiffusionControlnetPipeline, ControlNetModel |
|
|
|
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path |
|
model = ControlNetModel.from_single_file(url) |
|
|
|
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path |
|
pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet) |
|
``` |
|
""" |
|
|
|
from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt |
|
|
|
config_file = kwargs.pop("config_file", None) |
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
num_in_channels = kwargs.pop("num_in_channels", None) |
|
use_linear_projection = kwargs.pop("use_linear_projection", None) |
|
revision = kwargs.pop("revision", None) |
|
extract_ema = kwargs.pop("extract_ema", False) |
|
image_size = kwargs.pop("image_size", None) |
|
upcast_attention = kwargs.pop("upcast_attention", None) |
|
|
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] |
|
from_safetensors = file_extension == "safetensors" |
|
|
|
if from_safetensors and use_safetensors is False: |
|
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") |
|
|
|
|
|
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]: |
|
if pretrained_model_link_or_path.startswith(prefix): |
|
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] |
|
|
|
|
|
ckpt_path = Path(pretrained_model_link_or_path) |
|
if not ckpt_path.is_file(): |
|
|
|
repo_id = "/".join(ckpt_path.parts[:2]) |
|
file_path = "/".join(ckpt_path.parts[2:]) |
|
|
|
if file_path.startswith("blob/"): |
|
file_path = file_path[len("blob/") :] |
|
|
|
if file_path.startswith("main/"): |
|
file_path = file_path[len("main/") :] |
|
|
|
pretrained_model_link_or_path = hf_hub_download( |
|
repo_id, |
|
filename=file_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
force_download=force_download, |
|
) |
|
|
|
if config_file is None: |
|
config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml" |
|
config_file = BytesIO(requests.get(config_url).content) |
|
|
|
image_size = image_size or 512 |
|
|
|
controlnet = download_controlnet_from_original_ckpt( |
|
pretrained_model_link_or_path, |
|
original_config_file=config_file, |
|
image_size=image_size, |
|
extract_ema=extract_ema, |
|
num_in_channels=num_in_channels, |
|
upcast_attention=upcast_attention, |
|
from_safetensors=from_safetensors, |
|
use_linear_projection=use_linear_projection, |
|
) |
|
|
|
if torch_dtype is not None: |
|
controlnet.to(torch_dtype=torch_dtype) |
|
|
|
return controlnet |
|
|