|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .modeling_utils import ModelMixin |
|
from .resnet import Downsample2D |
|
|
|
|
|
class MultiAdapter(ModelMixin): |
|
r""" |
|
MultiAdapter is a wrapper model that contains multiple adapter models and merges their outputs according to |
|
user-assigned weighting. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the model (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
adapters (`List[T2IAdapter]`, *optional*, defaults to None): |
|
A list of `T2IAdapter` model instances. |
|
""" |
|
|
|
def __init__(self, adapters: List["T2IAdapter"]): |
|
super(MultiAdapter, self).__init__() |
|
|
|
self.num_adapter = len(adapters) |
|
self.adapters = nn.ModuleList(adapters) |
|
|
|
def forward(self, xs: torch.Tensor, adapter_weights: Optional[List[float]] = None) -> List[torch.Tensor]: |
|
r""" |
|
Args: |
|
xs (`torch.Tensor`): |
|
(batch, channel, height, width) input images for multiple adapter models concated along dimension 1, |
|
`channel` should equal to `num_adapter` * "number of channel of image". |
|
adapter_weights (`List[float]`, *optional*, defaults to None): |
|
List of floats representing the weight which will be multiply to each adapter's output before adding |
|
them together. |
|
""" |
|
if adapter_weights is None: |
|
adapter_weights = torch.tensor([1 / self.num_adapter] * self.num_adapter) |
|
else: |
|
adapter_weights = torch.tensor(adapter_weights) |
|
|
|
if xs.shape[1] % self.num_adapter != 0: |
|
raise ValueError( |
|
f"Expecting multi-adapter's input have number of channel that cab be evenly divisible " |
|
f"by num_adapter: {xs.shape[1]} % {self.num_adapter} != 0" |
|
) |
|
x_list = torch.chunk(xs, self.num_adapter, dim=1) |
|
accume_state = None |
|
for x, w, adapter in zip(x_list, adapter_weights, self.adapters): |
|
features = adapter(x) |
|
if accume_state is None: |
|
accume_state = features |
|
else: |
|
for i in range(len(features)): |
|
accume_state[i] += w * features[i] |
|
return accume_state |
|
|
|
|
|
class T2IAdapter(ModelMixin, ConfigMixin): |
|
r""" |
|
A simple ResNet-like model that accepts images containing control signals such as keyposes and depth. The model |
|
generates multiple feature maps that are used as additional conditioning in [`UNet2DConditionModel`]. The model's |
|
architecture follows the original implementation of |
|
[Adapter](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L97) |
|
and |
|
[AdapterLight](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L235). |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the model (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
Number of channels of Aapter's input(*control image*). Set this parameter to 1 if you're using gray scale |
|
image as *control image*. |
|
channels (`List[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The number of channel of each downsample block's output hidden state. The `len(block_out_channels)` will |
|
also determine the number of downsample blocks in the Adapter. |
|
num_res_blocks (`int`, *optional*, defaults to 2): |
|
Number of ResNet blocks in each downsample block |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
channels: List[int] = [320, 640, 1280, 1280], |
|
num_res_blocks: int = 2, |
|
downscale_factor: int = 8, |
|
adapter_type: str = "full_adapter", |
|
): |
|
super().__init__() |
|
|
|
if adapter_type == "full_adapter": |
|
self.adapter = FullAdapter(in_channels, channels, num_res_blocks, downscale_factor) |
|
elif adapter_type == "light_adapter": |
|
self.adapter = LightAdapter(in_channels, channels, num_res_blocks, downscale_factor) |
|
else: |
|
raise ValueError(f"unknown adapter_type: {type}. Choose either 'full_adapter' or 'simple_adapter'") |
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
return self.adapter(x) |
|
|
|
@property |
|
def total_downscale_factor(self): |
|
return self.adapter.total_downscale_factor |
|
|
|
|
|
|
|
|
|
|
|
class FullAdapter(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
channels: List[int] = [320, 640, 1280, 1280], |
|
num_res_blocks: int = 2, |
|
downscale_factor: int = 8, |
|
): |
|
super().__init__() |
|
|
|
in_channels = in_channels * downscale_factor**2 |
|
|
|
self.unshuffle = nn.PixelUnshuffle(downscale_factor) |
|
self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1) |
|
|
|
self.body = nn.ModuleList( |
|
[ |
|
AdapterBlock(channels[0], channels[0], num_res_blocks), |
|
*[ |
|
AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True) |
|
for i in range(1, len(channels)) |
|
], |
|
] |
|
) |
|
|
|
self.total_downscale_factor = downscale_factor * 2 ** (len(channels) - 1) |
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
x = self.unshuffle(x) |
|
x = self.conv_in(x) |
|
|
|
features = [] |
|
|
|
for block in self.body: |
|
x = block(x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
|
|
class AdapterBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, num_res_blocks, down=False): |
|
super().__init__() |
|
|
|
self.downsample = None |
|
if down: |
|
self.downsample = Downsample2D(in_channels) |
|
|
|
self.in_conv = None |
|
if in_channels != out_channels: |
|
self.in_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) |
|
|
|
self.resnets = nn.Sequential( |
|
*[AdapterResnetBlock(out_channels) for _ in range(num_res_blocks)], |
|
) |
|
|
|
def forward(self, x): |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
|
|
if self.in_conv is not None: |
|
x = self.in_conv(x) |
|
|
|
x = self.resnets(x) |
|
|
|
return x |
|
|
|
|
|
class AdapterResnetBlock(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) |
|
self.act = nn.ReLU() |
|
self.block2 = nn.Conv2d(channels, channels, kernel_size=1) |
|
|
|
def forward(self, x): |
|
h = x |
|
h = self.block1(h) |
|
h = self.act(h) |
|
h = self.block2(h) |
|
|
|
return h + x |
|
|
|
|
|
|
|
|
|
|
|
class LightAdapter(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
channels: List[int] = [320, 640, 1280], |
|
num_res_blocks: int = 4, |
|
downscale_factor: int = 8, |
|
): |
|
super().__init__() |
|
|
|
in_channels = in_channels * downscale_factor**2 |
|
|
|
self.unshuffle = nn.PixelUnshuffle(downscale_factor) |
|
|
|
self.body = nn.ModuleList( |
|
[ |
|
LightAdapterBlock(in_channels, channels[0], num_res_blocks), |
|
*[ |
|
LightAdapterBlock(channels[i], channels[i + 1], num_res_blocks, down=True) |
|
for i in range(len(channels) - 1) |
|
], |
|
LightAdapterBlock(channels[-1], channels[-1], num_res_blocks, down=True), |
|
] |
|
) |
|
|
|
self.total_downscale_factor = downscale_factor * (2 ** len(channels)) |
|
|
|
def forward(self, x): |
|
x = self.unshuffle(x) |
|
|
|
features = [] |
|
|
|
for block in self.body: |
|
x = block(x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
|
|
class LightAdapterBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, num_res_blocks, down=False): |
|
super().__init__() |
|
mid_channels = out_channels // 4 |
|
|
|
self.downsample = None |
|
if down: |
|
self.downsample = Downsample2D(in_channels) |
|
|
|
self.in_conv = nn.Conv2d(in_channels, mid_channels, kernel_size=1) |
|
self.resnets = nn.Sequential(*[LightAdapterResnetBlock(mid_channels) for _ in range(num_res_blocks)]) |
|
self.out_conv = nn.Conv2d(mid_channels, out_channels, kernel_size=1) |
|
|
|
def forward(self, x): |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
|
|
x = self.in_conv(x) |
|
x = self.resnets(x) |
|
x = self.out_conv(x) |
|
|
|
return x |
|
|
|
|
|
class LightAdapterResnetBlock(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) |
|
self.act = nn.ReLU() |
|
self.block2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) |
|
|
|
def forward(self, x): |
|
h = x |
|
h = self.block1(h) |
|
h = self.act(h) |
|
h = self.block2(h) |
|
|
|
return h + x |
|
|