File size: 31,763 Bytes
8ef8bbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
---
base_model: mixedbread-ai/deepset-mxbai-embed-de-large-v1
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1814
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: '
The document you provided seems to be a list of compounds, some of which are well-known
drugs or drugs used in experimental contexts, and others that don''t appear to
have recognized applications in medicine or science. The list includes substances
like cortisol, a hormone, and filopram, which is related to anesthetics or possibly
a misprint or misclassification. The side effects listed are also a mix, with
some being plausible reactions to certain medication (like Edema, dysphagia) and
others being quite unusual for commonly recognized drug interactions (like retinal
vein occlusion, which is not a typical side effect of most medications).
It would be useful to have labels or references indicating which of these compounds
are actually drugs and which are other chemical substances. For instance, cortisol,
if given its correct context, would typically have side effects associated with
cortisol therapy such as fluid retention or electrolyte imbalances.
If you need detailed information on how these substances work or what their possible
side effects might be, you''ll likely need to refer to a medical compendium or
a pharmacology resource for accurate data. It''s also important to clarify the
intended use for this list, whether for educational purposes, research, or another
context; the provided list appears to be a jumbled amalgamation, which might not
have clear clinical relevance without additional detail.'
sentences:
- Can you suggest medications targeting the GC gene/protein with a proven synergy
with AVE9633?
- Could you help identify the gene or protein that facilitates sodium-dependent
transportation and elimination of organic anions, with a particular emphasis on
those implicated in the cellular efflux of potentially hazardous organic anions?
Additionally, I'm interested in understanding if this gene or protein also mediates
the transport of drugs known to exhibit synergistic pharmacological interactions
with Ractopamine.
- Can you list the medications suitable for benign prostatic hyperplasia and tell
me if any are linked to dysphagia as a side effect?
- source_sentence: '
The provided information describes a gene that plays a role in multiple biological
processes and is linked with certain diseases. Here'
sentences:
- Which genes or proteins interact with the "Regulation of HSF1-mediated heat shock
response" pathway and also engage in protein-protein interactions with PRNP?
- Which anatomical parts lack the expression of genes or proteins involved in the
L-alanine degradation pathway?
- What is the name of a disease classified as a variant or subtype of sinoatrial
node disease in the latest medical disease taxonomy?
- source_sentence: '
The list you''ve provided contains a variety of medications, including antidepressants,
antihistamines, anxiolytics, and more. Here''s a breakdown by category:
### Antidepressants
- **Amphetamine**
- **Cevimeline**
- **Esmolol**
- **Bortezomib**
- **'
sentences:
- What are some related conditions to triple-negative breast cancer that could be
causing persistent fatigue?
- Which medication is effective against simple Plasmodium falciparum infections
and functions by engaging with genes or proteins that interact with the minor
groove of DNA rich in adenine and thymine?
- Which diseases associated with SRSF2 gene mutations are primarily found in adults
and the elderly?
- source_sentence: '
The drug mentioned in the query is "Dabigatran". It belongs to the class of drugs
known as direct thrombin inhibitors. This class of drugs is used primarily for
the prevention and treatment of thromboembolic disorders.
Regarding potential side effects, they include:
1. Inflammatory abnormality of the skin (Erythema)
2. Hemolytic anemia (a type of anemia where red blood cells are destroyed prematurely)
3. Thrombocytopenia (low platelet count)
4. Pancytopenia (a decrease in the number of all types of blood cells - red, white,
and platelet cells)
5. Fever
6. Pain
7. Seizure
8. Headache
9. Vomiting
10. Abdominal pain
11. Hyperactivity
12. Erythroderma (a type of skin flare characterized by a redness over the trunk
and limbs)
13. Vertigo (a sensation of spinning or motion)
14. Granulocytopenia (low neutrophil count)
15. Pruritus (severe itching)
16. Confusion
17. Eosinophilia (a condition characterized by an increased number of eosinophils,
a type of white blood cell)
18. Anaphylactic shock (a serious allergic reaction)
19. Hyperkinetic movements
20. Nausea
21. Acute sinusitis (inflammation of the sinus cavities)
22. Agitation
23. Excessive daytime somnolence (excessively sleepy during the day)
24. Aplastic anemia (a condition where the bone marrow fails to produce enough
new blood cells)
25. Increased blood urea nitrogen (BUN) (a marker of kidney function, indicating
the kidneys are not working properly)
26. Prolonged prothrombin time (an indication of an increased risk of bleeding,
due to a reduction in clotting protein)
27. Recurrent tonsillitis (repeated inflammation of the tonsils)
Dabigatran works by inhibiting thrombin (Factor IIa), an enzyme involved in the
clotting process. If any of these side effects are experienced, it is important
to seek medical attention or consult with a healthcare provider.'
sentences:
- What are the clinical manifestations or phenotypic characteristics associated
with the subtype of myocardial infarction known as posteroinferior?
- Could you supply a list of drugs prescribed for respiratory infections that may
also lead to side effects like hemolytic anemia and nausea?
- Which diseases are associated with the FAM111A gene that present with both skeletal
and endocrine system abnormalities?
- source_sentence: '
The list you provided seems to be a mix of various chemical substances, some of
which appear to be medications, others are chemical compounds, and a few could
be substances from other fields (e.g., water treatment, food additives). To be
more precise, it would be helpful to categorize them properly based on their common
usage:
### Medications and Drugs:
- **Antibiotics**: Cefoxitin, Tobramycin, Amikacin
- ** pain and inflammation relievers**: Benoxaprofen, Daptomycin, Ceftolozane,
Salicylates (Benzydamine, Dexamethasone sodium phosphate)
- **Intravenous fluids**: Magnesium trisilicate
- **Antivirals**: Ribavirin, Inotersen
- **Antibacterial agents**: Epirizole, Floctafenine, Flunixin
- **Vaccines**: Vaborbactam, Brincidofovir, Adefovir
- **Neuromodulators**: Cefatrizine, Bumadizone, Alminoprofen
- **Cancer treatments**: Colistin, Nitrofurantoin, Sisomicin
### Chemical Compounds:
- **Salts and salts of acidity**: Fosfomycin, Azosemide, Mofebutazone
- **Amino acids**: Phenylalanine, Nitrosalicylic'
sentences:
- Is there a regulatory function associated with the epidermal growth factor receptor
or its interacting proteins in the control of genes or proteins that participate
in the inactivation of fast sodium channels during Phase 1 of cardiac action potential
propagation?
- Which diseases, either as subtypes or complications, should be considered when
a patient shows symptoms suggesting neoplastic syndromes?
- Which drugs interact with the SERPINA1 gene/protein as carriers?
model-index:
- name: SentenceTransformer based on mixedbread-ai/deepset-mxbai-embed-de-large-v1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.3910891089108911
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4752475247524752
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.49504950495049505
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5544554455445545
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3910891089108911
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15841584158415842
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09900990099009901
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05544554455445544
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3910891089108911
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4752475247524752
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.49504950495049505
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5544554455445545
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4669635292605997
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.439788621719315
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.44615433269461197
name: Cosine Map@100
---
# SentenceTransformer based on mixedbread-ai/deepset-mxbai-embed-de-large-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/deepset-mxbai-embed-de-large-v1](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [mixedbread-ai/deepset-mxbai-embed-de-large-v1](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1) <!-- at revision fe450620a047ac704e100d84aebe7cd3fc137021 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("FareedKhan/mixedbread-ai_deepset-mxbai-embed-de-large-v1_FareedKhan_prime_synthetic_data_2k_3_8")
# Run inference
sentences = [
'\nThe list you provided seems to be a mix of various chemical substances, some of which appear to be medications, others are chemical compounds, and a few could be substances from other fields (e.g., water treatment, food additives). To be more precise, it would be helpful to categorize them properly based on their common usage:\n\n### Medications and Drugs:\n- **Antibiotics**: Cefoxitin, Tobramycin, Amikacin\n- ** pain and inflammation relievers**: Benoxaprofen, Daptomycin, Ceftolozane, Salicylates (Benzydamine, Dexamethasone sodium phosphate)\n- **Intravenous fluids**: Magnesium trisilicate\n- **Antivirals**: Ribavirin, Inotersen\n- **Antibacterial agents**: Epirizole, Floctafenine, Flunixin\n- **Vaccines**: Vaborbactam, Brincidofovir, Adefovir\n- **Neuromodulators**: Cefatrizine, Bumadizone, Alminoprofen\n- **Cancer treatments**: Colistin, Nitrofurantoin, Sisomicin\n\n### Chemical Compounds:\n- **Salts and salts of acidity**: Fosfomycin, Azosemide, Mofebutazone\n- **Amino acids**: Phenylalanine, Nitrosalicylic',
'Which drugs interact with the SERPINA1 gene/protein as carriers?',
'Is there a regulatory function associated with the epidermal growth factor receptor or its interacting proteins in the control of genes or proteins that participate in the inactivation of fast sodium channels during Phase 1 of cardiac action potential propagation?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3911 |
| cosine_accuracy@3 | 0.4752 |
| cosine_accuracy@5 | 0.495 |
| cosine_accuracy@10 | 0.5545 |
| cosine_precision@1 | 0.3911 |
| cosine_precision@3 | 0.1584 |
| cosine_precision@5 | 0.099 |
| cosine_precision@10 | 0.0554 |
| cosine_recall@1 | 0.3911 |
| cosine_recall@3 | 0.4752 |
| cosine_recall@5 | 0.495 |
| cosine_recall@10 | 0.5545 |
| cosine_ndcg@10 | 0.467 |
| cosine_mrr@10 | 0.4398 |
| **cosine_map@100** | **0.4462** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 1,814 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 267.06 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 39.66 tokens</li><li>max: 120 tokens</li></ul> |
* Samples:
| positive | anchor |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|
| <code><br><br>Based on the provided information, it appears you are describing a complex biological system involving various molecules, drugs, diseases, and anatomical structures. Here's a breakdown:<br><br>### Key Entities<br>1. **Molecules and Targets**<br> - Mentioned molecules include metabolites, phenols, and drugs, with specific functional groups related to their chemical properties.<br> - Targets include enzymes (like acetyl-CoA carboxylase) and diseases causing various health conditions (e.g., Finnish type amyloidosis, lung cancer).<br><br>2. **Functionality and Interactions**<br> - The molecules and drugs interact with various biological processes, pathways, and bodily systems.<br></code> | <code>Identify common genetic targets that interact with both N-(3,5-dibromo-4-hydroxyphenyl)benzamide and 1-Naphthylamine-5-sulfonic acid.</code> |
| <code><br>The provided list appears to be a collection of gene symbols related to cancer. Gene symbols are used in genetics and molecular biology to identify genes. Each symbol is associated with a specific gene that plays a role in cellular functions, including cancer processes. When studying cancer, researchers often analyze these genes to understand their roles in tumor development, potential as targets for therapy, or as indicators for patient prognosis. For example, some genes listed are known oncogenes or tumor suppressor genes:<br><br>- TP53: A tumor suppressor gene that when mutated can lead to uncontrolled cell growth.<br>- P53, POLD1, PTEN: These are well-known tumor suppressors that help regulate cell division and DNA repair.<br>- BRCA</code> | <code>Which anatomical structures lack expression of genes or proteins involved in the homogentisate degradation pathway?</code> |
| <code><br><br>The gene in question appears to have a wide range of functions across various biological processes and body systems. It's involved in several key areas that regulate cellular responses, metabolic processes, and organ development. Here is a summary of its potential roles:<br><br>1. **Cell Growth and Regulation**: The gene contributes to growth control in cells, particularly in smooth muscle cells, and seems to influence cell proliferation, which is essential for tissue repair and development.<br><br>2. **Nerve Function**: It plays a role in functions like signal transduction, neurotrophin signaling, and regulation of neural activity, suggesting it’s involved in neural health and development.<br><br>3. **Metabolic Processes**: There is evidence linking</code> | <code>Identify genes or proteins that interact with angiotensin-converting enzyme 2 (ACE2) and are linked to a common phenotype or effect.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768
],
"matryoshka_weights": [
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `learning_rate`: 1e-05
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|
| 0 | 0 | - | 0.3930 |
| 0.0441 | 10 | 1.18 | - |
| 0.0881 | 20 | 1.0507 | - |
| 0.1322 | 30 | 0.9049 | - |
| 0.1762 | 40 | 0.8999 | - |
| 0.2203 | 50 | 0.6519 | - |
| 0.2643 | 60 | 0.5479 | - |
| 0.3084 | 70 | 0.6493 | - |
| 0.3524 | 80 | 0.4706 | - |
| 0.3965 | 90 | 0.5459 | - |
| 0.4405 | 100 | 0.5692 | - |
| 0.4846 | 110 | 0.7834 | - |
| 0.5286 | 120 | 0.5341 | - |
| 0.5727 | 130 | 0.5343 | - |
| 0.6167 | 140 | 0.4865 | - |
| 0.6608 | 150 | 0.3942 | - |
| 0.7048 | 160 | 0.3578 | - |
| 0.7489 | 170 | 0.5158 | - |
| 0.7930 | 180 | 0.3426 | - |
| 0.8370 | 190 | 0.5789 | - |
| 0.8811 | 200 | 0.5271 | - |
| 0.9251 | 210 | 0.577 | - |
| 0.9692 | 220 | 0.5193 | - |
| 1.0 | 227 | - | 0.4354 |
| 1.0132 | 230 | 0.4598 | - |
| 1.0573 | 240 | 0.2735 | - |
| 1.1013 | 250 | 0.2919 | - |
| 1.1454 | 260 | 0.3206 | - |
| 1.1894 | 270 | 0.2851 | - |
| 1.2335 | 280 | 0.3899 | - |
| 1.2775 | 290 | 0.3279 | - |
| 1.3216 | 300 | 0.2155 | - |
| 1.3656 | 310 | 0.3471 | - |
| 1.4097 | 320 | 0.327 | - |
| 1.4537 | 330 | 0.229 | - |
| 1.4978 | 340 | 0.2902 | - |
| 1.5419 | 350 | 0.3216 | - |
| 1.5859 | 360 | 0.2902 | - |
| 1.6300 | 370 | 0.4527 | - |
| 1.6740 | 380 | 0.1583 | - |
| 1.7181 | 390 | 0.3144 | - |
| 1.7621 | 400 | 0.2573 | - |
| 1.8062 | 410 | 0.2309 | - |
| 1.8502 | 420 | 0.3475 | - |
| 1.8943 | 430 | 0.3082 | - |
| 1.9383 | 440 | 0.3176 | - |
| 1.9824 | 450 | 0.2104 | - |
| **2.0** | **454** | **-** | **0.4453** |
| 2.0264 | 460 | 0.2615 | - |
| 2.0705 | 470 | 0.1599 | - |
| 2.1145 | 480 | 0.1015 | - |
| 2.1586 | 490 | 0.2154 | - |
| 2.2026 | 500 | 0.1161 | - |
| 2.2467 | 510 | 0.2208 | - |
| 2.2907 | 520 | 0.2035 | - |
| 2.3348 | 530 | 0.1622 | - |
| 2.3789 | 540 | 0.1758 | - |
| 2.4229 | 550 | 0.2782 | - |
| 2.4670 | 560 | 0.303 | - |
| 2.5110 | 570 | 0.1787 | - |
| 2.5551 | 580 | 0.2221 | - |
| 2.5991 | 590 | 0.1686 | - |
| 2.6432 | 600 | 0.2522 | - |
| 2.6872 | 610 | 0.1334 | - |
| 2.7313 | 620 | 0.1102 | - |
| 2.7753 | 630 | 0.2499 | - |
| 2.8194 | 640 | 0.2648 | - |
| 2.8634 | 650 | 0.1859 | - |
| 2.9075 | 660 | 0.2385 | - |
| 2.9515 | 670 | 0.2283 | - |
| 2.9956 | 680 | 0.1126 | - |
| 3.0 | 681 | - | 0.4462 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.2.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |