# Fearao/RoBERTa_based_on_eastmoney_guba_comments ## Model description This model is based on uer/roberta-base-finetuned-dianping-chinese, fine-tuned using comment data from Eastmoney stock bar, and I used the original tokenizer. Thanks a lot to the authors of the model for all the help they gave me. ## How to use You can use this model directly with a pipeline for text classification (take the case of RoBERTa_based_on_eastmoney_guba_comments): ```python >>> from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline >>> model = AutoModelForSequenceClassification.from_pretrained('Fearao/RoBERTa_based_on_eastmoney_guba_comments') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> text_classification = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) >>> text_classification("又跳水了") [{'label': 'negative (stars 1, 2 and 3)', 'score': 0.9989427924156189}] ``` ## Training data Eastmoney stock bar comments datasets are used [Fearao/guba_eastmoney](https://huggingface.co/datasets/Fearao/guba_eastmoney)。 ## Training procedure Num examples = 7087 \ Num Epochs = 3 \ Instantaneous batch size per device = 8 \ Total train batch size (w. parallel, distributed & accumulation) = 8 \ Gradient Accumulation steps = 1 \ Total optimization steps = 2658 \ Number of trainable parameters = 102269186